• Title/Summary/Keyword: multiple cracks

Search Result 172, Processing Time 0.027 seconds

Application of curvature of residual operational deflection shape (R-ODS) for multiple-crack detection in structures

  • Asnaashari, Erfan;Sinha, Jyoti K.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.309-322
    • /
    • 2014
  • Detection of fatigue cracks at an early stage of their development is important in structural health monitoring. The breathing of cracks in a structure generates higher harmonic components of the exciting frequency in the frequency spectrum. Previously, the residual operational deflection shape (R-ODS) method was successfully applied to beams with a single crack. The method is based on the ODSs at the exciting frequency and its higher harmonic components which consider both amplitude and phase information of responses to map the deflection pattern of structures. Although the R-ODS method shows the location of a single crack clearly, its identification for the location of multiple cracks in a structure is not always obvious. Therefore, an improvement to the R-ODS method is presented here to make the identification process distinct for the beams with multiple cracks. Numerical and experimental examples are utilised to investigate the effectiveness of the improved method.

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

Physical interpretation of concrete crack images from feature estimation and classification

  • Koh, Eunbyul;Jin, Seung-Seop;Kim, Robin Eunju
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.385-395
    • /
    • 2022
  • Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.

Optimum Global Failure Prediction Model of Inconel 600 Thin Plate with Two Parallel Through-Wall Cracks

  • Moon Seong In;Kim Young Jin;Lee Jin Ho;Song Myung Ho;Choi Young Hwan
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.316-326
    • /
    • 2004
  • The $40\%$ of wall criterion, which is generally used for the plugging of steam generator tubes, is applied only to a single crack. In a previous study, a total number of 9 failure models were proposed to estimate the local failure of the ligament between cracks, and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however known that parallel axial cracks are more frequently detected than collinear axial cracks during an in-service inspection. The objective of this study is to determine the plastic collapse model that can be applied to steam generator tubes containing two parallel axial through-wall cracks. Three previously proposed local failure models were selected as the candidates. Subsequently, the interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed to determine the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a COD base model was selected as an optimum model.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.9-20
    • /
    • 2000
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

Estimation of Fatigue Crack Propagation Life for Weldments by using Mk-factor (Mk-계수를 고려한 용접부 피로균열진전수명 평가)

  • Han, Seung-Ho;Han, Jung-Woo;Lim, Jeon
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.243-245
    • /
    • 2004
  • Failure mechanisms of weldments under fatigue loads are interpreted that multiple collinear surface cracks initiating along weld toe propagate under the mutual interaction and coalescence of adjacent two cracks. To estimate fatigue crack propagation life for these weldments, the stress intensity factors of the multiple surface cracks have to be calculated which are influenced strongly by the geometrical complexity of weld toes and attachments. The Ak-factors derived by a parametric study can be introduced for the effective calculation of the stress intensity factors taking into account the geometrical complexity. The fatigue life was estimated by using the Ak-factors and the method considering the propagation mechanisms of the multiple surface cracks. The estimated values showed a good agreement with the measured fatigue life experimentally.

  • PDF

Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks (다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식)

  • Shon, Sudeok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

Fatigue Life Estimation of Welded Joints considering Statistical Characteristics of Multiple Surface Cracks (복수 표면균열의 확률적 특성을 고려한 용접부 피로수명 평가)

  • Han, Jeong Woo;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1472-1479
    • /
    • 2005
  • Multiple surface crack distributed randomly along a weld toe influences strongly on the fatigue crack propagation life of welded joint. It is investigated by using statistical approaches based on series of systematic experiments. From the statistical results, initial crack numbers and its locations follow the normal distribution, and the probability of initial crack depths and lengths can be described well by tile Weibull distribution. These characteristics are used to calculate the fatigue crack propagation life, in which the mechanisms of mutual interaction and coalescence of the multiple cracks are considered as well as the Mk-factors obtained from a parametric study on the crack depths and lengths. The automatic calculation is achieved by the NESUSS, where the parameters such as the number, location and size of the cracks are all treated as random variables. The random variables are dealt through the Monte-Carlo simulation with sampling random numbers of 2,000. The simulation results show that the multiple cracks lead to much shorter crack propagation life compared with those in single crack situation. The sum of the simulation and tile fatigue crack initiation life derived by the notch strain approach agrees well with the experiments.