• Title/Summary/Keyword: multiple aliasing

Search Result 15, Processing Time 0.028 seconds

Development of a Digital Receiver for Detecting Radar Signals (레이더 신호 탐지용 디지털수신기 개발)

  • Cha, Minyeon;Choi, Hyeokjae;Kim, Sunghoon;Moon, Byungjin;Kim, Jaeyun;Lee, Jonghyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.332-340
    • /
    • 2019
  • Electronic warfare systems are needed to be advantageous in the modern war. Many radar threat signals with various frequency spectrums and complicated techniques exist. For detecting the threats, a receiver with wide and narrow-band digital processing is needed. To process a wide-band searching mode, a polyphase filter bank has become the architecture of choice to efficiently detect threats. A polyphase N-path filter aligns the re-sampled time series in each path, and a discrete Fourier transform aligns phase and separates the sub-channel baseband aliases. Multiple threats and CW are detected or rejected when the signals are received in different sub-channels. And also, to process a narrow-band precision mode, a direct down converter is needed to reduce aliasing by using a decimation filter. These digital logics are designed in a FPGA. This paper shows how to design and develop a wide and narrow-band digital receiver that is capable to detect the threats.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

A Variable Sample Rate Recursive Arithmetic Half Band Filter for SDR-based Digital Satellite Transponders (SDR기반 디지털 위성 트랜스폰더를 위한 가변 표본화율의 재귀 연산 구조)

  • Baek, Dae-Sung;Lim, Won-Gyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1079-1085
    • /
    • 2013
  • Due to the limited power supply resources, it is essential that the minimization of algorithmic operation and the reduction of the hardware logical-resources in the design of the satellite transponder. It is also required that the transponder process the signals of various bandwidth efficiently, that is suitble for the SDR-based implementation. This paper proposes a variable rate down sampler which can provide variable bandwidth and data rate for carrier, ranging and sub-band command signals respectively. The proposed down sampler can provide multiple $2^M$ decimated outputs from a single half band filter with recursive arithmetic architecture, which can minimize the hardware resources as well as the arithmetic operations. The algorithm for hardware implementation as well as the analysis for the passband flatness and aliasing is presented and varified by the FPGA implementation.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

DCT-based Regularized High-Resolution Image Reconstruction Algorithm (DCT 기반의 정규화 된 고해상도 영상 복원 알고리즘)

  • 박진열;이승현;강문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1558-1566
    • /
    • 1999
  • While high resolution images are required for various applications, aliased low-resolution images are only available due to the physical limitations of sensors. In this paper, we propose an algorithm to reconstruct a high resolution image from multiple aliased low-resolution images, which is based on the generalized multichannel deconvolution technique. The conventional approaches are based on the discrete Fourier transform (DFT) since the aliasing effect is easily analyzed in the frequency domain. However, the useful solution may not be available in many cases, i.e., the underdetermined cases or the insufficient subpixel information cases. In order to compensate for such ill-posedness, the generalized multichannel regularization was adopted in the spatial domain. Furthermore, the usage of the discrete cosine transform instead of the DFT leads to the computationally efficient reconstruction algorithm. The validity of the proposed algorithm is both theoretically and experimentally demonstrated in this paper. It is also shown that the effect of inaccurate motion information is reduced by regularization.

  • PDF