• 제목/요약/키워드: multiphysics modelling and simulation

검색결과 3건 처리시간 0.016초

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

Modelling and simulation of a closed-loop electrodynamic shaker and test structure model for spacecraft vibration testing

  • Waimer, Steffen;Manzato, Simone;Peeters, Bart;Wagner, Mark;Guillaume, Patrick
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.205-223
    • /
    • 2018
  • During launch a spacecraft is subjected to a variety of dynamical loads transmitted through the launcher to spacecraft interface or air-born transmission excitations in the acoustic pressure field inside the fairing. As a result, spacecraft are tested on ground to ensure and demonstrate the global integrity of the structure against these loads, to screen the flight hardware for quality of workmanship and to validate mathematical models. This paper addresses the numerical modelling and simulation of the low frequency sine and random vibration tests performed on electrodynamic shaker facilities to comprise the mechanical-borne transmission loads through the launcher to spacecraft interface. Consequently, the paper reviews techniques and methodologies to derive a reliable and representative coupled virtual vibration testing simulation environment based on experimental data. These technologies are explored with the main objectives to ensure a stable, reliable and accurate control while testing. As a result, the use of the derived simulation models in combination with the added value of improved control and signal processing algorithms can lead to a safer and smoother vibration test control of the entire environmental test campaign.

COMSOL을 이용한 20W급 LED램프의 방열 해석 (Analyze on Heat-sink of 20Watt Class LED Lamp using COMSOL)

  • 어익수
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1484-1488
    • /
    • 2009
  • 본 논문은 LED조명기구의 상용화에 가장 큰 문제로 제기되는 방열설계에 관한 논문으로서, COMSOL을 이용한 방열해석을 통하여 문제해결의 방법을 제시한다. COMSOL Multiphysics에 있는 Heat Transfer Module의 Transient Analysis를 활용하여 해석한 결과, 시뮬레이션 값과 시작품 제작 후 측정 온도와의 차이가 10[$^{\circ}C$]이하로 도출되었으며, Led Lamp가 설치되는 실내.외의 환경조건의 온도변화에 따른 제 요소들을 잘 활용하면 실제 작품의 목표치에 근접하는 결과를 얻을 수 있음을 확인할 수 있었다.