Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.39-46
/
2022
In this paper, we propose a multi-task model that can simultaneously predict general-purpose tasks such as part-of-speech tagging, lemmatization, and dependency parsing using the UD Korean Kaist v2.3 corpus. The proposed model thus applies the self-attention technique of the BERT model and the graph-based Biaffine attention technique by fine-tuning the multilingual BERT and the two Korean-specific BERTs such as KR-BERT and KoBERT. The performances of the proposed model are compared and analyzed using the multilingual version of BERT and the two Korean-specific BERT language models.
Quality estimation (QE) can evaluate the quality of machine translation output even for those who do not know the target language, and its high utilization highlights the need for QE. QE shared task is held every year at Conference on Machine Translation (WMT), and recently, researches applying Pretrained Language Model (PLM) are mainly being conducted. In this paper, we conduct a survey on the QE task and research trends, and we summarize the features of PLM. In addition, we used a multilingual BART model that has not yet been utilized and performed comparative analysis with the existing studies such as XLM, multilingual BERT, and XLM-RoBERTa. As a result of the experiment, we confirmed which PLM was most effective when applied to QE, and saw the possibility of applying the multilingual BART model to the QE task.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.540-543
/
2021
본 논문에서는 Multi-Head Attention 대신 Spatial Gating Unit을 사용하는 GMLP[1]에 작은 Attention 신경망을 추가한 모델을 구성하여 뉴스와 위키피디아 데이터로 사전학습을 실시하고 한국어 다운스트림 테스크(감성분석, 개체명 인식)에 적용해 본다. 그 결과, 감성분석에서 Multilingual BERT보다 0.27%높은 Accuracy인 87.70%를 보였으며, 개체명 인식에서는 1.6%높은 85.82%의 F1 Score를 나타내었다. 따라서 GMLP가 기존 Transformer Encoder의 Multi-head Attention[2]없이 SGU와 작은 Attention만으로도 BERT[3]와 견줄만한 성능을 보일 수 있음을 확인할 수 있었다. 또한 BERT와 추론 속도를 비교 실험했을 때 배치사이즈가 20보다 작을 때 BERT보다 1에서 6배 정도 빠르다는 것을 확인할 수 있었다.
Seyoung Jeong;Byeongjin Kim;Daeshik Kim;Wooyoung Kim;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.577-580
/
2023
악성댓글은 인터넷상에서 정서적, 심리적 피해를 주는 문제로 인식되어 왔다. 본 연구는 한국어 악성댓글 탐지 분석을 위해 KcBERT 및 다양한 모델을 활용하여 성능을 비교하였다. 또한, 공개된 한국어 악성댓글 데이터가 부족한 것을 해소하기 위해 기계 번역을 이용하고, 다국어 언어 모델(Multilingual Model) mBERT를 활용하였다. 다양한 실험을 통해 KcBERT를 미세 조정한 모델의 정확도 및 F1-score가 타 모델에 비해 의미 있는 결과임을 확인할 수 있었다.
With the growth of the e-commerce market, consumers increasingly rely on user reviews to make purchasing decisions. Consequently, researchers are actively conducting studies to effectively analyze these reviews. Among the various methods of sentiment analysis, the aspect-based sentiment analysis approach, which examines user reviews from multiple angles rather than solely relying on simple positive or negative sentiments, is gaining widespread attention. Among the various methodologies for aspect-based sentiment analysis, there is an analysis method using a transformer-based model, which is the latest natural language processing technology. In this paper, we conduct an aspect-based sentiment analysis on multilingual user reviews using two real datasets from the latest natural language processing technology model. Specifically, we use restaurant data from the SemEval 2016 public dataset and multilingual user review data from the cosmetic domain. We compare the performance of transformer-based models for aspect-based sentiment analysis and apply various methodologies to improve their performance. Models using multilingual data are expected to be highly useful in that they can analyze multiple languages in one model without building separate models for each language.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.5
/
pp.15-30
/
2023
Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.
This study analyzed the translation error factors of machine translation services such as Naver Papago and Google Translate through Self-Attention path visualization. Self-Attention is a key method of the Transformer and BERT NLP models and recently widely used in machine translation. We propose a method to explain translation error factors of machine translation algorithms by comparison the Self-Attention paths between ST(source text) and ST'(transformed ST) of which meaning is not changed, but the translation output is more accurate. Through this method, it is possible to gain explainability to analyze a machine translation algorithm's inside process, which is invisible like a black box. In our experiment, it was possible to explore the factors that caused translation errors by analyzing the difference in key word's attention path. The study used the XLM-RoBERTa multilingual NLP model provided by exBERT for Self-Attention visualization, and it was applied to two examples of Korean-Chinese and Korean-English translations.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.239-244
/
2023
신경망 기반의 다국어 및 교차 언어 정보 검색 모델은 타겟 언어로 된 학습 데이터가 필요하지만, 이는 고자원 언어에 치중되어있다. 본 논문에서는 이를 해결하기 위해 영어 학습 데이터와 한국어-영어 병렬 말뭉치만을 이용한 효과적인 다국어 정보 검색 모델 학습 방법을 제안한다. 언어 예측 태스크와 경사 반전 계층을 활용하여 인코더가 언어에 구애 받지 않는 벡터 표현을 생성하도록 학습 방법을 고안하였고, 이를 한국어가 포함된 다국어 정보 검색 벤치마크에 대해 실험하였다. 본 실험 결과 제안 방법이 다국어 사전학습 모델과 영어 데이터만을 이용한 베이스라인보다 높은 성능을 보임을 실험적으로 확인하였다. 또한 교차 언어 정보 검색 실험을 통해 현재 검색 모델이 언어 편향성을 가지고 있으며, 성능에 직접적인 영향을 미치는 것을 보였다.
Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.86-90
/
2021
Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.
Along with the rapid development of artificial intelligence technology, natural language processing, which deals with human language, is also actively studied. In particular, BERT, a language model recently proposed by Google, has been performing well in many areas of natural language processing by providing pre-trained model using a large number of corpus. Although BERT supports multilingual model, we should use the pre-trained model using large amounts of Korean corpus because there are limitations when we apply the original pre-trained BERT model directly to Korean. Also, text contains not only vocabulary, grammar, but contextual meanings such as the relation between the front and the rear, and situation. In the existing natural language processing field, research has been conducted mainly on vocabulary or grammatical meaning. Accurate identification of contextual information embedded in text plays an important role in understanding context. Knowledge graphs, which are linked using the relationship of words, have the advantage of being able to learn context easily from computer. In this paper, we propose a system to extract Korean contextual information using pre-trained BERT model with Korean language corpus and knowledge graph. We build models that can extract person, relationship, emotion, space, and time information that is important in the text and validate the proposed system through experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.