• 제목/요약/키워드: multilayer neural network

검색결과 276건 처리시간 0.028초

Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling

  • Dinarvand, Reza;Ardakani, Alireza
    • Geomechanics and Engineering
    • /
    • 제28권5호
    • /
    • pp.505-520
    • /
    • 2022
  • In recent years, geotextile-encased gravel columns (usually called stone columns) have become a popular method to increasing soil shear strength, decreasing the settlement, acceleration of the rate of consolidation, reducing the liquefaction potential and increasing the bearing capacity of foundations. The behavior of improved loose base-soil with gravel columns under shear loading and the shear stress-horizontal displacement curves got from large scale direct shear test are of great importance in understanding the performance of this method. In the present study, by performing 36 large-scale direct shear tests on sandy base-soil with different fine-content of zero to 30% in both not improved and improved with gravel columns, the effect of the presence of gravel columns in the loose soils were investigated. The results were used to predict the shear stress-horizontal displacement curve of these samples using support vector machines (SVM). Variables such as the non-plastic fine content of base-soil (FC), the area replacement ratio of the gravel column (Arr), the geotextile encasement and the normal stress on the sample were effective factors in the shear stress-horizontal displacement curve of the samples. The training and testing data of the model showed higher power of SVM compared to multilayer perceptron (MLP) neural network in predicting shear stress-horizontal displacement curve. After ensuring the accuracy of the model evaluation, by introducing different samples to the model, the effect of different variables on the maximum shear stress of the samples was investigated. The results showed that by adding a gravel column and increasing the Arr, the friction angle (ϕ) and cohesion (c) of the samples increase. This increase is less in base-soil with more FC, and in a proportion of the same Arr, with increasing FC, internal friction angle and cohesion decreases.

Fast Spectral Inversion of the Strong Absorption Lines in the Solar Chromosphere Based on a Deep Learning Model

  • Lee, Kyoung-Sun;Chae, Jongchul;Park, Eunsu;Moon, Yong-Jae;Kwak, Hannah;Cho, Kyuhyun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.46.3-47
    • /
    • 2021
  • Recently a multilayer spectral inversion (MLSI) model has been proposed to infer the physical parameters of plasmas in the solar chromosphere. The inversion solves a three-layer radiative transfer model using the strong absorption line profiles, H alpha and Ca II 8542 Å, taken by the Fast Imaging Solar Spectrograph (FISS). The model successfully provides the physical plasma parameters, such as source functions, Doppler velocities, and Doppler widths in the layers of the photosphere to the chromosphere. However, it is quite expensive to apply the MLSI to a huge number of line profiles. For example, the calculating time is an hour to several hours depending on the size of the scan raster. We apply deep neural network (DNN) to the inversion code to reduce the cost of calculating the physical parameters. We train the models using pairs of absorption line profiles from FISS and their 13 physical parameters (source functions, Doppler velocities, Doppler widths in the chromosphere, and the pre-determined parameters for the photosphere) calculated from the spectral inversion code for 49 scan rasters (~2,000,000 dataset) including quiet and active regions. We use fully connected dense layers for training the model. In addition, we utilize a skip connection to avoid a problem of vanishing gradients. We evaluate the model by comparing the pairs of absorption line profiles and their inverted physical parameters from other quiet and active regions. Our result shows that the deep learning model successfully reproduces physical parameter maps of a scan raster observation per second within 15% of mean absolute percentage error and the mean squared error of 0.3 to 0.003 depending on the parameters. Taking this advantage of high performance of the deep learning model, we plan to provide the physical parameter maps from the FISS observations to understand the chromospheric plasma conditions in various solar features.

  • PDF

최적설계 시스템을 이용한 부품에 대한 형상설계 방법론 (Methodology of Shape Design for Component Using Optimal Design System)

  • 이준성;조성규
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.672-679
    • /
    • 2018
  • 본 논문은 최적설계 시스템을 이용한 형상설계 방법론에 대해 설명하고 있으며, 일반적으로 3차원 해석은 설계를 위해 반드시 필요하다. 퍼지지식처리 수법과 계산기하학적 기법에 바탕을 둔 자동화된 유한요소 메쉬 생성 기법은 상용화된 유한요소해석코드와 솔리드모델러와 함께 시스템에 결합되어 있다. 또한, 다층형 신경망의 도움과 함께 개발된 시스템은 다차원 설계변수 공간에 존재하는 여러 만족하는 설계해인 디자인윈도우를 얻을 수 있게 해준다. 개발된 최적화 설계 시스템 사용된 부품을 평가하는데 성공적으로 적용하였다. 사이드 하우징 브라켓을 현장에서 사용되어지는 굴삭기의 힘과 유압브레이커의 작용하는 응력을 응력 게이지로 사이드 하우징 브라켓의 크랙 발생부위에 부착하여 최대응력이 얼마나 걸리는지를 측정하였다. 적용하는 대상을 현장에서와 동일한 조건하에서 최대응력이 허용응력보다 같거나 적게 하고, 기존형상 유지, 재질은 SM490, 중량 최소화 안전계수는 3으로 하여, 최대응력 값에 대한 해석을 수행하였다. 구조가 비교적 간단한 36톤용 사이드 하우징 브라켓을 최적화하였지만, 다른 클래스의(톤수 별) 사이드 하우징 브라켓 적용 시 품질향상에 크게 기여하리라 생각된다.

특징집합 IG-MLP 평가 기반의 최적화된 특징선택 방법을 이용한 질환 예측 머신러닝 모델 (Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction)

  • 김경륜;김재권;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.11-21
    • /
    • 2020
  • 암을 제외한 한국인의 가장 높은 사망원인은 심뇌혈관질환으로 사망원인의 24%를 차지한다. 현재 국내 환자의 심혈관질환의 위험도 산출은 프레밍험 위험지수를 기반으로 하지만, 국외의 가이드라인에 의존하고 있어 정확도가 떨어지는 편이며, 뇌혈관질환의 예측에 대한 위험도는 산출할 수 없다. 심뇌혈관질환은 예방을 위한 조기증상들의 특징 분석이 어려워 질환예측이 힘들며, 한국인에 적합한 예측 방법이 필요하다. 본 연구의 목적은 심뇌혈관질환 데이터를 이용하여, 특징집합 IG-MLP 평가 기반의 특징선택 방법론을 시뮬레이션 하여 검증하는 것이다. 제안하는 방법은 제4~7기 국민건강영양조사 원시자료를 이용한다. 심뇌혈관질환의 예측에 중요한 특징들을 선별하기 위해, 속성들의 심뇌혈관질환에 대한 정보이득-다층신경망을 이용한 분석을 실시하며, 최종적으로 선별된 특징을 이용한 심뇌혈관질환 예측 모델을 제공한다. 제안하는 방법으로 한국인의 심뇌혈관질환에 관련된 중요한 특징들을 찾을 수 있으며, 최적화된 특징들로 구성된 예측 모델은 한국인에 대해 더욱 정확한 심뇌혈관 예측을 할 수 있다.

Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축 (Building of Prediction Model of Wind Power Generationusing Power Ramp Rate)

  • 황미영;김성호;윤은일;김광득;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.211-218
    • /
    • 2012
  • 전 세계적으로 화석연료의 많이 사용이 증가되고 있으며 이로 인해 온실가스가 배출되어 지구 온난화와 환경오염이 심각해지고 있는 실정이다. 지구의 환경오염을 줄이기 위해서 무공해 청정에너지인 신재생에너지에 대한 관심이 증가되는 추세인데, 그중에서도 풍력발전은 환경오염 물질을 배출하지 않고, 자원량이 무한대이기 때문에 많은 관심을 받고 있다. 하지만, 풍력발전은 전력 생산량이 불규칙한 단점을 갖고 있어 풍력 터빈의 손상과 전력 생산량이 불규칙적인 문제를 야기하여 이러한 문제점을 보완하기 위해 풍력 발전량을 정확하게 예측하는 것이 중요하다. 풍력 발전량을 정확하게 예측하기 위해서 전력 생산량이 급증 또는 급감하는 것을 의미하는 ramp의 특성을 잘 활용해야 한다. 이 논문에서는 예측의 정확도를 높이기 위하여 다계층 신경망을 이용해 예측모델을 구축하였다. 구축된 예측모델은 흔히 사용되는 풍속, 풍향 속성뿐만 아니라 Power Ramp Rate(PRR) 속성까지 사용하였다. 구축된 풍력 발전량 예측모델은 앞서 말한 세 가지 속성을 모두 사용한 경우, 두 속성을 조합하여 사용한 경우 총 4가지 예측모델을 구축하였다. 구축된 4가지 예측모델을 성능평가 한 결과 PRR, 풍속, 풍향의 속성 모두를 사용한 예측모델의 예측 값이 풍력 터빈에서 관측된 관측 값에 가장 근접하였다. 그로 인해 PRR 속성을 사용하면 풍력 발전량의 예측 정확도를 향상 시킬 수 있었다.

정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형 (Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant)

  • 김주환;이경혁;김수전;김경훈
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1283-1293
    • /
    • 2022
  • 본 연구는 정수장의 수처리 공정에서 계측되고 있는 수량 및 수질데이터의 활용과 수처리 공정제어의 지능화를 위한 것으로 정수장에서 전염소 공정이 수반되는 처리공정에서 침전지 유출수 잔류염소농도 안정화를 위하여 이를 추정할 수 있는 모형을 구축하고자 하였다. 정수장 침전지 유출수의 잔류염소농도를 예측하기 위하여 중회귀모형과 인공지능 알고리즘 중 다층퍼셉트론 신경망, 랜덤포레스트 및 장단기기억(Long Short Term Memory; LSTM) 모형을 활용하였고 그 결과를 비교, 평가하였다. 모형의 입력변수로는 전염소 공정이 도입된 정수장에서의 잔류염소농도, 수온, 탁도, pH, 전기전도도, 유량, 알칼리도 등이 사용되었고 전염소에 따른 침전지의 안정적 운영을 위해 요구되는 침전지 잔류염소농도를 출력변수로 구성하였다. 적용 결과에서는 랜덤포레스트 모형이 가장 양호한 결과를 보여 주었으며 다음으로 LSTM, 다층퍼셈트론 신경망 순으로 나타났다. 수학적 모형인 중회귀모형은 적합도 측면에서 가장 낮은 결과를 보여 주었는데, 이는 수량과 수질데이터의 수치적인 규모나 차원의 차이뿐만 아니라 계절별 수질특성에 따라 염소소비 특성이 매우 다양하게 반응하기 때문으로 판단된다. 따라서 정수장 수처리 공정에서 인공지능 알고리즘의 적용을 위해서는 랜덤포레스트와 같이 의사결정 트리구조의 도입과 적용이 타당한 것으로 나타났다. 본 연구에서 분석된 결과를 근거로 전염소 공정이 도입된 정수장 수처리 공정에서 염소주입량을 실시간으로 예측 가능하게 함으로써 침전지 유출수에서 잔류염소농도를 일정하게 유지하는데 기여할 수 있을 것으로 기대된다.