• Title/Summary/Keyword: multilayer cylinder

Search Result 6, Processing Time 0.018 seconds

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.

Strain based finite element for the analysis of heterogeneous hollow cylinders subjected to thermo-mechanical loading

  • Bouzeriba, Asma;Bouzrira, Cherif
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.825-834
    • /
    • 2022
  • The effectiveness and accuracy of the strain-based approach applied for analysis of two kinds of heterogeneous hollow cylinders subjected to thermal and mechanical loads are examined in this study. One is a multilayer cylinder in which the material in each layer is assumed to be linearly elastic, homogeneous and isotropic. Another is a hollow cylinder made of functionally graded materials with arbitrary gradient. The steady state condition without heat generation is considered. A sector in-plane finite element in the polar coordinate system based on strain approach is used. This element has only three degrees of freedom at each corner node. Analytical solutions available in the literature are presented to illustrate the accuracy of the sector element used. The obtained results for displacements and stresses are shown to be in good agreement with the analytical solutions.

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.

EM wave scattering by bianisotropically coated multilayer cylinder with an impedance sheet[II] (쌍이방성 매질 코팅 다층 원통에 의한 전자파 산란 해석[II])

  • 엄상진;윤중한;이화춘;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.391-399
    • /
    • 2001
  • In this paper, electromagnetic wave scattering from a bianisotropicaly coated cylinder is formulated by using wave functions for bianisotropic media and boundary-value method. The cross section of the cylinder is made of a conducting core, a lossless dielectric layer which is both electrically magnetically bianisotropic, and a bianisotropic impedance sheet and a different uniaxial bianisotrpic coating. The solutions to arbitrary polarization angles are presented in two-dimensional. This paper presents and exact solution to the problem of scattering by a long composite circular cylinder using the boundary method. The validity of this solution is verified by comparing numerical results with those in literature. The numerical results for various geometrical and electrical parameters on bistatic scattering cross-section are presented.

  • PDF

True Rolling Technique of New Gravure-Offset Printing for R2R Over-Piling (R2R 중첩인쇄를 위한 그라비어오프셋인쇄의 투루롤링 기술)

  • Choi, Byung-Oh;Jo, Jeong-Dai;Kim, Dong-Soo;Lim, Kyu-Jin;Ryu, Byung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1131-1140
    • /
    • 2011
  • A new rotary gravure-offset printing unit is constructed by paralleling a gravure plate cylinder, a blanket cylinder and a impression roller. A Muti-Unit Gravure-Offset Printing Press(MUGOP) equipped with a series of the 3 printing units is utilized for roll-to-roll fine printing. Its core technology is precise over-piling printing of fine patterns. The severe problems of 'slurring' and 'doubling' in typical offset printing are unavoidable, which can be eliminated by applying a soft pad-type blanket cylinder and the unique 'true rolling' technique. Nip pressure between the blanket cylinder and the plate cylinder is measured by the constant pressure control system which equipped with load cells attached on the cylinders' axes. The running circumference of the blanket cylinder is increased to reach the same circumference of the plate cylinder as the pressure increasing, so that the specifications of the blanket cylinder is determined by the relationships of its shore hardness, diameter and nip pressure. When a softer blanket is used, a blanket cylinder of smaller diameter could give higher nip pressure. Realization of the true rolling technique on the MUGOP makes multilayer printing possible as well as fine printing in printed electronics.