• 제목/요약/키워드: multi-view learning

검색결과 60건 처리시간 0.025초

인공지능 기반 3차원 공간 복원 최신 기술 동향

  • 임성훈
    • 방송과미디어
    • /
    • 제25권2호
    • /
    • pp.17-26
    • /
    • 2020
  • 최근 스마트폰에서의 증강현실, 미적 효과의 증대(예, 라이브 포커싱) 등의 어플리케이션을 제공하기 위해 모바일 기기에서의 3차원 공간 복원 기술에 대한 관심이 증가하고 있다. 소비자들의 요구에 발 맞춰 최근 스마트폰 제조사는 모든 플래그십 모델에 다중 카메라 및 뎁스 센서(거리 측정 센서)를 탑재하는 추세이다. 본 고에서는 모바일 폰에 탑재되고 있는 대표적인 세 축의 뎁스 추정(공간 복원) 방식에 대해 간단히 살펴보고, 최근 심층학습(Deep learning)의 등장으로 기술 발전의 새로운 국면에 접어 든 다중 시점 매칭(Multi-view stereo) 방법에 대해 소개하고자 한다. 심층 신경망이 재조명 받은 2012년 전까지 주류 연구 방향이었던 전통 기하학 기반의 방법에 대한 소개를 시작으로 심층 신경망기반의 방법론으로의 발전된 형태를 살펴본다. 또한, 신경망기반의 방법론은 크게 3 세대로 나누어 각 세대별 특징에 대해 자세히 살펴보고, 다양한 데이터에 대한 실험 결과를 통해 세대별 공간 복원 결과를 비교 분석한다.

3차원 합성곱 신경망 기반 향상된 스테레오 매칭 알고리즘 (Enhanced Stereo Matching Algorithm based on 3-Dimensional Convolutional Neural Network)

  • 왕지엔;노재규
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.179-186
    • /
    • 2021
  • For stereo matching based on deep learning, the design of network structure is crucial to the calculation of matching cost, and the time-consuming problem of convolutional neural network in image processing also needs to be solved urgently. In this paper, a method of stereo matching using sparse loss volume in parallax dimension is proposed. A sparse 3D loss volume is constructed by using a wide step length translation of the right view feature map, which reduces the video memory and computing resources required by the 3D convolution module by several times. In order to improve the accuracy of the algorithm, the nonlinear up-sampling of the matching loss in the parallax dimension is carried out by using the method of multi-category output, and the training model is combined with two kinds of loss functions. Compared with the benchmark algorithm, the proposed algorithm not only improves the accuracy but also shortens the running time by about 30%.

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

3 차원 휴먼 자세 추정을 위한 다시점 준지도 학습 (Multi-view semi-supervised learning for 3D human pose estimation)

  • 김도엽;장주용
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.134-138
    • /
    • 2021
  • 3 차원 휴먼 자세 추정 모델은 다시점 모델과 단시점 모델로 분류될 수 있다. 일반적으로 다시점 모델은 단시점 모델에 비하여 뛰어난 자세 추정 성능을 보인다. 단시점 모델의 경우 3 차원 자세 추정 성능의 향상은 많은 양의 학습 데이터를 필요로 한다. 하지만 3 차원 자세에 대한 참값을 획득하는 것은 쉬운 일이 아니다. 이러한 문제를 다루기 위해, 우리는 다시점 모델로부터 다시점 휴먼 자세 데이터에 대한 의사 참값을 생성하고, 이를 단시점 모델의 학습에 활용하는 방법을 제안한다. 또한, 우리는 각각의 다시점 영상으로부터 추정된 자세의 일관성을 고려하는 다시점 일관성 손실함수를 제안하여, 이것이 단시점 모델의 효과적인 학습에 도움을 준다는 것을 보인다.

  • PDF

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘 (Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm)

  • 김미경;차의영
    • 방송공학회논문지
    • /
    • 제23권5호
    • /
    • pp.598-605
    • /
    • 2018
  • 행동 인식은 데이터를 통해 인간의 행동을 인식하는 기술로서 비디오 감시 시스템을 통한 위험 행동과 같은 어플리케이션에 활용되어 질 수 있다. 기존의 행동 인식 알고리즘은 2차원 카메라를 통한 영상이나 다중모드 센서, 멀티 뷰와 같은 장비를 이용한 방법을 사용하거나 3D 장비를 이용하여 이루어져 왔다. 2차원 데이터를 사용한 경우 3차원 공간의 행위 인식에서는 가려짐과 같은 현상으로 낮은 인식율을 보였고 다른 방법은 복잡한 장비의 구성이나 고가의 추가적인 장비로 인한 어려움이 많았다. 본 논문은 RGB와 Depth 정보만을 이용하여 추가적인 장비 없이 CCTV 영상만으로 인간의 행동을 인식하는 방법을 제안한다. 먼저 RGB 영상에서 스켈레톤 추출 알고리즘을 적용하여 관절과 신체부위의 포인트를 추출한다. 이를 식을 적용하여 변위 벡터와 관계 벡터를 포함한 벡터로 변형한 후 RNN 모델을 통하여 연속된 벡터 데이터를 학습한다. 학습된 모델을 다양한 데이터 세트에 적용하여 행동 인식 정확도를 확인한 결과 2차원 정보만으로 3차원 정보를 이용한 기존의 알고리즘과 유사한 성능을 입증할 수 있었다.

Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안 (A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification)

  • 이고은;유영수;하대목;구본상;이관훈
    • 한국BIM학회 논문집
    • /
    • 제11권3호
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.

Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류 (Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network)

  • 이태주;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출 (Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering)

  • 우하용;김경환
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 여러 대의 카메라를 이용한 감시 시스템이 정확하고 효율적으로 동작하기 위하여 카메라 시야 간의 연결 관계를 아는 것이 필수적이다. 카메라들의 연결 관계를 파악하기 위하여 카메라 시야 내의 출입 영역을 검출하는 일이 선행되어야 한다. 본 논문에서는 카메라 시야에서 객체의 등장 및 퇴장으로부터 얻은 데이터에 그래프 이론 기반의 클러스터링(clustering)을 적용하여 시야 내의 출입 영역을 검출하는 방법을 제안한다. 데이터 포인트들 사이의 관계를 조사하여 최소신장트리를 구성하고, 트리의 에지들 중 일관성을 갖지 않는 것들을 삭제하여 well-formed 클러스터를 얻는다. 본 논문에서는 클러스터의 형태를 설명하는 두 가지 특징을 정의하고 이를 클러스터의 분할 조건으로 사용하였다. 실험결과를 통하여 데이터 포인트의 분포가 조밀하지 않은 경우 expectation maximization(EM)에 기반을 둔 방법에 비하여 치안하는 방법이 보다 효과적으로 클러스터링을 수행함을 확인하였다. 또한 EM 기반 방법들에 비하여 안정적인 결과를 얻기 위해 필요한 데이터 포인트의 개수가 적으므로 출입영역에 대한 학습시간을 단축할 수 있다.

연인산 도립공원 조성계획 (Planning for the Yeonin Mountain Provincial Park)

  • 이준복
    • 한국조경학회지
    • /
    • 제35권1호
    • /
    • pp.9-19
    • /
    • 2007
  • This plan was submitted as part of an invited competition for the provincial park planning of Yeonin Mountain, which was held by the Gyeonggi Innovation Corporation in November, 2006. The proposed site is located at Seungan-ri, Gapyung-eup, Gapyung-gun, Gyunggi-do and covers about $150,010m^2$. The main goal of this project is to "Suggest a New Park Paradigm" by shedding old ways of thinking about parks through an integrated development concept. Planning was approached as follows: First, providing an unique theme to the support facilities area of Yeonin Mountain Piovincial Park. To achieve this theme, the Seungan support facilities area was designated to be home to a Seven Colored Theme Garden, currently named the Native Wild-flower Garden, while the Baekdun facilities area is to be centered on a Self-loaming Forest Camp, which will give the chance of a hands-on wildlife experience. With these themes, which create recreational goals that will encourage not only tourism but education as well, the foundation was laid for a multi-purpose park paradigm. Second, Developing a Core Facility Zone. To accomplish the development of a core facility zone, park buildings will be arranged in accordance with an integrated building lay-out for easy access and use, and the facilities specified by design for the Seven Colored Theme Garden are provided for the newly prepared site. This will allow focus on the user's viewpoint instead of the view of the planner or of ease of maintenance.