• Title/Summary/Keyword: multi-view image segmentation

Search Result 18, Processing Time 0.03 seconds

PROPAGATION OF MULTI-LEVEL CUES WITH ADAPTIVE CONFIDENCE FOR BILAYER SEGMENTATION OF CONSISTENT SCENE IMAGES

  • Lee, Soo-Chahn;Yun, Il-Dong;Lee, Sang-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.148-153
    • /
    • 2009
  • Few methods have dealt with segmenting multiple images with analogous content. Concurrent images of a scene and gathered images of a similar foreground are examples of these images, which we term consistent scene images. In this paper, we present a method to segment these images based on manual segmentation of one image, by iteratively propagating information via multi-level cues with adaptive confidence. The cues are classified as low-, mid-, and high- levels based on whether they pertain to pixels, patches, and shapes. Propagated cues are used to compute potentials in an MRF framework, and segmentation is done by energy minimization. Through this process, the proposed method attempts to maximize the amount of extracted information and maximize the consistency of segmentation. We demonstrate the effectiveness of the proposed method on several sets of consistent scene images and provide a comparison with results based only on mid-level cues [1].

  • PDF

Carpal Bone Segmentation Using Modified Multi-Seed Based Region Growing

  • Choi, Kyung-Min;Kim, Sung-Min;Kim, Young-Soo;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.332-337
    • /
    • 2007
  • In the early twenty-first century, minimally invasive surgery is the mainstay of various kinds of surgical fields. Surgeons gave percutaneously surgical treatment of the screw directly using a fluoroscopic view in the past. The latest date, they began to operate the fractured carpal bone surgery using Computerized Tomography (CT). Carpal bones composed of wrist joint consist of eight small bones which have hexahedron and sponge shape. Because of these shape, it is difficult to grasp the shape of carpal bones using only CT image data. Although several image segmentation studies have been conducted with carpal bone CT image data, more studies about carpal bone using CT data are still required. Especially, to apply the software implemented from the studies to clinical fIeld, the outcomes should be user friendly and very accurate. To satisfy those conditions, we propose modified multi-seed region growing segmentation method which uses simple threshold and the canny edge detector for finding edge information more accurately. This method is able to use very easily and gives us high accuracy and high speed for extracting the edge information of carpal bones. Especially, using multi-seed points, multi-bone objects of the carpal bone are extracted simultaneously.

Joint Segmentation of Multi-View Images by Region Correspondence (영역 대응을 이용한 다시점 영상 집합의 통합 영역화)

  • Lee, Soo-Chahn;Kwon, Dong-Jin;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.685-695
    • /
    • 2008
  • This paper presents a method to segment the object of interest from a set of multi-view images with minimal user interaction. Specifically, after the user segments an initial image, we first estimate the transformations between foreground and background of the segmented image and the neighboring image, respectively. From these transformations, we obtain regions in the neighboring image that respectively correspond to the foreground and the background of the segmented image. We are then able to segment the neighboring image based on these regions, and iterate this process to segment the whole image set. Transformation of foregrounds are estimated by feature-based registration with free-form deformation, while transformation of backgrounds are estimated by homography constrained to affine transformation. Here, both are based on correspondence point pairs. Segmentation is done by estimating pixel color distributions and defining a shape prior based on the obtained foreground and background regions and applying them to a Markov random field (MRF) energy minimization framework for image segmentation. Experimental results demonstrate the effectiveness of the proposed method.

3D Segmentation for High-Resolution Image Datasets Using a Commercial Editing Tool in the IoT Environment

  • Kwon, Koojoo;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1126-1134
    • /
    • 2017
  • A variety of medical service applications in the field of the Internet of Things (IoT) are being studied. Segmentation is important to identify meaningful regions in images and is also required in 3D images. Previous methods have been based on gray value and shape. The Visible Korean dataset consists of serially sectioned high-resolution color images. Unlike computed tomography or magnetic resonance images, automatic segmentation of color images is difficult because detecting an object's boundaries in colored images is very difficult compared to grayscale images. Therefore, skilled anatomists usually segment color images manually or semi-automatically. We present an out-of-core 3D segmentation method for large-scale image datasets. Our method can segment significant regions in the coronal and sagittal planes, as well as the axial plane, to produce a 3D image. Our system verifies the result interactively with a multi-planar reconstruction view and a 3D view. Our system can be used to train unskilled anatomists and medical students. It is also possible for a skilled anatomist to segment an image remotely since it is difficult to transfer such large amounts of data.

Illumination Compensation Algorithm based on Segmentation with Depth Information for Multi-view Image (깊이 정보를 이용한 영역분할 기반의 다시점 영상 조명보상 기법)

  • Kang, Keunho;Ko, Min Soo;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.935-944
    • /
    • 2013
  • In this paper, a new illumination compensation algorithm by segmentation with depth information is proposed to improve the coding efficiency of multi-view images. In the proposed algorithm, a reference image is first segmented into several layers where each layer is composed of objects with a similar depth value. Then we separate objects from each other even in the same layer by labeling each separate region in the layered image. Then, the labeled reference depth image is converted to the position of the distortion image view by using 3D warping algorithm. Finally, we apply an illumination compensation algorithm to each of matched regions in the converted reference view and distorted view. The occlusion regions that occur by 3D warping are also compensated by a global compensation method. Through experimental results, we are able to confirm that the proposed algorithm has better performance to improve coding efficiency.

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

Essential Computer Vision Methods for Maximal Visual Quality of Experience on Augmented Reality

  • Heo, Suwoong;Song, Hyewon;Kim, Jinwoo;Nguyen, Anh-Duc;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • The augmented reality is the environment which consists of real-world view and information drawn by computer. Since the image which user can see through augmented reality device is a synthetic image composed by real-view and virtual image, it is important to make the virtual image generated by computer well harmonized with real-view image. In this paper, we present reviews of several works about computer vision and graphics methods which give user realistic augmented reality experience. To generate visually harmonized synthetic image which consists of a real and a virtual image, 3D geometry and environmental information such as lighting or material surface reflectivity should be known by the computer. There are lots of computer vision methods which aim to estimate those. We introduce some of the approaches related to acquiring geometric information, lighting environment and material surface properties using monocular or multi-view images. We expect that this paper gives reader's intuition of the computer vision methods for providing a realistic augmented reality experience.

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

A Mode Selection Algorithm using Scene Segmentation for Multi-view Video Coding (객체 분할 기법을 이용한 다시점 영상 부호화에서의 예측 모드 선택 기법)

  • Lee, Seo-Young;Shin, Kwang-Mu;Chung, Ki-Dong
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.198-203
    • /
    • 2009
  • With the growing demand for multimedia services and advances in display technology, new applications for 3$\sim$D scene communication have emerged. While multi-view video of these emerging applications may provide users with more realistic scene experience, drastic increase in the bandwidth is a major problem to solve. In this paper, we propose a fast prediction mode decision algorithm which can significantly reduce complexity and time consumption of the encoding process. This is based on the object segmentation, which can effectively identify the fast moving foreground object. As the foreground object with fast motion is more likely to be encoded in the view directional prediction mode, we can properly limit the motion compensated coding for a case in point. As a result, time savings of the proposed algorithm was up to average 45% without much loss in the quality of the image sequence.

A Proposal of Deep Learning Based Semantic Segmentation to Improve Performance of Building Information Models Classification (Semantic Segmentation 기반 딥러닝을 활용한 건축 Building Information Modeling 부재 분류성능 개선 방안)

  • Lee, Ko-Eun;Yu, Young-Su;Ha, Dae-Mok;Koo, Bon-Sang;Lee, Kwan-Hoon
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.22-33
    • /
    • 2021
  • In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.