• Title/Summary/Keyword: multi-temporal

Search Result 669, Processing Time 0.026 seconds

Change Detection of a Small Town Area from Multi-Temporal Aerial Photographs (다시기 항공사진으로부터 소도읍 지역의 변화탐지)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.131-137
    • /
    • 2004
  • This study presents the application of multi-temporal aerial photographs in detecting change in a small urban area. For the panchromatic aerial images of the scale of 1/20000 and 1/37500 photographed in 1987, 1996 and 2000, image geometric correction and registration were carried out before performing change detection in a common reference system and then image mosaicking. The image differencing technigue was employed to detect urban features and landcover change and then the results were compared to those of image ratioing techniques. Also threshold values were suggested in applying image differencing for change detection.

  • PDF

Hydrosphere Change Detection of the Basin using Multi-temporal Landsat Satellite Imagery (다시기 Landsat영상을 이용한 유역의 수계 변화 탐지)

  • Kang, Joon-Mook;Park, Joon-Kyu;Um, Dae-Yong;Lee, Yong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.31-39
    • /
    • 2007
  • In this study, the hydrosphere change of the Daecheong dam basin was detected qualitatively and quantitatively using Landsat satellite images until recentness since the construction of Daecheong dam. The hydrosphere change of the basin was analyzed by applying supervised classification about Landsat satellite images which were classified according to the hydrosphere, vegetation, road and etc. for four distinct years which are 1981, 1987, 1993, and 2002 year. Landsat satellite images of each year were achieved overlay analysis with extracting only the hydrosphere, and though these results, the hydrosphere change of the Daecheong dam basin was monitored efficiently.

  • PDF

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

Storage Strategy and Separated Storage Structure for Multi-dimensional Geographic Information System (다차원 지리정보시스템을 위한 저장기법 및 분리된 저장구조)

  • Park, Dong-Seon;Bae, Hae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Up to the present, many GIS logical data models have been proposed to incorporate time dimension into traditional 2-dimensional (2D space) GIS databases. However, these models are difficult to implementation of multi-dimensional GIS and have problems of significant data redundancy and search performance. This paper proposes a new storage strategy and a separate storage structure, that is composed of current database and past database, in order to reduce data redundancy and improve search performance of temporal query. Also we design moving algorithm for migration from current database to past database, and design efficient search algorithm for temporal query.

  • PDF

A Design of Concurrent Two-Way Synchronizations Protocol on a Mobile Environments (모바일 환경에서 동시 양방향 동기화 프로토콜의 설계)

  • Kim, Hong-Ki;Kim, Dong-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.91-94
    • /
    • 2008
  • As the mobile devices and the wireless networks have high-performance capabilities, it is possible to synchronize the spatio-temporal data of a server with the spatio-temporal data of a mobile device which are collected at a field. However, since the server process the synchronization which the model device requests, the whole synchronizations of mass mobile devices take long time. In this paper, we propose the scheme to process concurrently the synchronizations of mobile devices which does not conflict with others using the scheme of a multi-queue.

  • PDF

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

Development of Non-Invasive Pressure Estimation Using 3D Multi-Path Line Integration Method from Magnetic Resonance Velocimetry (MRV) (자기공명유속계 (MRV) 에서 3차원 다중경로 선적분법을 활용한 비침습적 압력예측 방법 개발)

  • Ilhoon Jang;Muhammad Hafidz Ariffudin;Simon Song
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.14-23
    • /
    • 2023
  • The pressure difference across stenotic blood vessels is a commonly used clinical metric for diagnosing many cardiovascular diseases. At present, most clinical pressure measurements rely solely on invasive catheterization. In this study, we propose a novel method for non-invasive pressure estimation using the incompressible Navier-Stokes equations and a 3D multi-path integration approach. We verify spatio-temporal convergence on an in-silico dataset of a cylindrical straight pipe phantom with steady and pulsatile flow fields. We then evaluate the proposed method on an in vitro dataset of reconstructed control, pre-operative, and post-operative carotid artery cases acquired from 4D flow MRI. The performance of our method is compared to existing approaches based on the pressure Poisson equation and work-energy relative pressure. The results demonstrate the proposed method's high accuracy, robustness to spatio-temporal subsampling, and reduced sensitivity to noise, highlighting its great potential for non-invasive pressure estimation.