• Title/Summary/Keyword: multi-story buildings

Search Result 119, Processing Time 0.026 seconds

A Study on the Architectural Characteristic Jang-Dae of Castle in the Joseon Dynasty (조선시대 성곽 장대의 건축특성에 관한 연구)

  • Kim, Ki-hyeon;Chang, Hun-duck
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.120-141
    • /
    • 2015
  • This paper is a preliminary study of architectural characteristics of Jangdae (general's podium), which shows one of the technical changes in fortification of Joseon Dynasty. As a facility for commands of generals and training for officers and men, it was located inside a fortress. Although it is not certain when the first Jangdae was built, the number of them dramatically increased around 18th century. Since the top priority function of the Jangdae was the prospect, it was installed at the hilly spot with open architecture. In addition, the open structure of Eupseong fortress towers on the riverside banks could simultaneously offer the functions as viewing around and Jangdae. Since Jangdae was also a place for military drills and reviews of soldiers, a wide podium was positioned at the front to muster the soldiers. This feature was standardized in the space organization of Jangdae in Joseon, and a mere podium was installed unless the topographic restrictions allows enough space. On the other hand, as a place for a commander, the hierarchy of the Jangdae was revealed through a variety of architectural characteristics. The hierarchy was assigned to the commander's space through the altitude difference, and diverse ornaments were added to show a sense of class. The floor plan of the Jangdae building can be largely categorized into rectangle and square, and the typical sizes of the former are $5{\times}4$ Kans (traditional measuring unit between two columns) and $3{\times}2$ Kans. Out of these two types, buildings of $5{\times}4$ Kans were found in flat land and eupseong fortresses with large space, and the relatively smaller ones of $3{\times}2$ Kans in mountain fortresses. All buildings of square floor plan had $3{\times}3$ Kans style, and the center Kan was twice wider than the side Kan to make the central space wide. It seems that the purpose was to secure the interior space of the upper story because the center Kan accounts for the floor area of the upper story. Some Jangdae's had internal story to form overhead space. The multi-roofed tower style with eaves attached to the upper and lower story is found exclusively in Jangdae. The buildings shows the Onkanmulim style which extends Naejinju (inner column) of the lower story to be the Byeonju (outer column) of the upper story, and the log-framed floor in the upper floor was structured by inserting the Changbang (connecting beam) between the Naejinju's and joining the log frames. In addition, the towers in eupseong fortresses had log-framed floor in the upper floor by setting up the high Nuhaju (column underneath a roof) and joining Cheongbang to the upper part of the column while it cannot be regarded as multi-roofed because only the upper part has a roof.

The Structural Engineering Design And Construction Of The Tallest Building In Europe Lakhta Center, St. Petersburg. Russia

  • Abdelrazaq, Ahmad;Travush, Vladimir;Shakhvorostov, Alexey;Timofeevich, Alexander;Desyatkin, Mikhail;Jung, Hyungil
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.283-300
    • /
    • 2020
  • The Lakhta Center is a Multifunction Complex Development (MFCD) consisting of 1) an 86 story office tower rising 462 m above the ground to provide high-end offices for Gazprom Neft and Gazprom Group affiliates 2) a Multi-Function Building (MFB) that includes, a scientific/educational center, a sport center, a children's technopark, a planetarium, a multi-transformable hall, an exhibition center, shops, restaurants, and other public facilities 3) a Stylobate 4) "The Arch, which forms the main entrance to the tower, restaurants, and cafes 5) underground parking and 6) a wide range of large public plazas. While each of the MFCD buildings is technically challenging in its own right, the focus of the paper is to present the development and integration of the structural and foundation systems of the bowed, tapered, and twisted shape of the tower into the fabric of the tallest Tower in Europe.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure (CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구)

  • Lee Jang-Hwan;Hwang Byoung-jun;Kim Je-Sub;Jung Keun-Ho;Lim Nam-Ki;Jung Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

Robust Optimal Damper Design of Structures with Modal Uncertainty Using Multi-Objective System Identification (다목적 시스템식별을 이용한 모우드 불확실성이 있는 구조물의 강인 최적 감쇠기 설계)

  • Jeong, Seong-Woon;Ok, Seung-Yong;Park, Won-Suk;Koh, Hyun-Moo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.76-85
    • /
    • 2012
  • This paper proposes a robust damper design technique for adjacent structures against model uncertainty. This approach introduces multi-objective optimization based system identification using measurement information which enables reasonable selection of the perturbation range in the robust design. Moreover, in order to improve the numerical efficiency in sampling the structural models required for the robust design of large structures, we define new objective functions which enable us to minimize the number of candidate models suitable to the purpose of the robust design. In addition, the performance index is newly employed to evaluate the robust performance of the sampled structural models, and the robust design has been performed according to the performance index. As a numerical example to demonstrate the efficiency of the proposed method, 5-story and 10-story two adjacent buildings are taken into account, and the existing and newly proposed robust design approaches are compared with each other. The results demonstrate that the proposed approach can guarantee more robust damper system only using small number of samples of the structural models because of using the measurement information which leads to improvement in the numerical efficiency, compared with the existing robust design methods.

Selection of Green Roof Initiative Zone for Improving Adaptation Capability against Urban Heat Island (도시열섬 적응능력 제고를 위한 옥상녹화 중점지역 선정 방안)

  • Park, Eun-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2014
  • The improvement of adaptation capability against heat island (ACHI) by greening buildings is considered as an important measure to cope with a climate change. This study aimed to select the most appropriate zones for green roof initiative in case study sites, Bucheon, Anyang, and Suwon Cities and to investigate the characteristics of buildings for greening to improve ACHI. Relative ACHI for each lot was estimated from 0 to -9, assuming that it decreases with the distance from green space and waterbody. Low adaptation capabilities were mostly shown in the old urban blocks with dense low-rise buildings and lack of green space. Three blocks with the lowest ACHIs were chosen as a green roof initiative zone in each city. They are largely residential areas including low-rise buildings such as single, multi-household houses, townhouses, 5 or lower story apartments and few are industrial areas crowded with small factory buildings. The areas of building roof available for greening are 8.8% within the selected zones in Bucheon City, 5.3% in Anyang City, and 4.9% in Suwon City. As it were, 25.2~41.7% of the roof top areas are available for greening in these zones. It means that roof top areas of $25,000{\sim}120,000m^2$ can be used for greening within the selected zones of $0.64{\sim}1.65km^2$ to improve ACHI. The approach and results of the study are significant to provide a logical basis and information on location, scale, effect, and target figure of greening as a measure to cope with climate change.

Extending the OPRCB Seismic isolation system's governing equations of motion to 3D state and its application in multi-story buildings

  • M. Hosseini;S. Azhari;R. Shafie Panah
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.217-235
    • /
    • 2023
  • Orthogonal pairs of rollers on concave beds (OPRCB) are a low-cost, low-tech rolling-based isolating system, whose high efficiency has been shown in a previous study. However, seismic performance of OPRCB isolators has only been studied in the two-dimensional (2D) state so far. This is while their performance in the three-dimensional (3D) state differs from that of the 2D state, mainly since the vertical accelerations due to rollers' motion in their beds, simultaneously in two orthogonal horizontal directions, are added up and resulting in bigger vertical inertia forces and higher rolling resistance. In this study, first, Lagrange equations were used to derive the governing equations of motion of the OPRCB-isolated buildings in 3D. Then, some regular shear-type OPRCB-isolated buildings were considered subjected to three-component excitations of far- and near-source earthquakes, and their responses were compared to those of their fixed-base counterparts. Finally, the effects of more realistic modeling and analysis were examined by comparing the responses of isolated buildings in 2D and 3D states. Response histories were obtained by the fourth-order Runge-Kutta-Nystrom method, considering the geometrical nonlinearity of isolators. Results reveal that utilizing the OPRCB isolators effectively reduces the acceleration response, however, depending on the system specifications and earthquake characteristics, the maximum responses of isolated buildings in the 3D state can be up to 40% higher than those in the 2D state.

Response transformation factors and hysteretic energy distribution of reinforced concrete braced frames

  • Herian A. Leyva;Eden Bojorquez;Juan Bojorquez;Alfredo Reyes;Fabrizio Mollaioli;Omar Payan;Leonardo Palemon;Manual A. Barraza
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.313-323
    • /
    • 2024
  • Most of existing buildings in Mexico City are made of reinforced concrete (RC), however, it has been shown that they are very susceptible to narrow-band long duration ground motions. In recent years, the use of dual systems composed by Buckling Restrained Braces (BRB) has increased due to its high energy dissipation capacity under reversible cyclical loads. Therefore, in this work the behavior of RC buildings with BRB is studied in order to know their performance, specifically, the energy distribution through height and response transformation factors between the RC and simplified systems are estimated. For this propose, seven RC buildings with different heights were designed according to the Mexico City Seismic Design Provisions (MCSDP), in addition, equivalent single degree of freedom (SDOF) systems were obtained. Incremental dynamic analyses on the buildings under 30 narrow-band ground motions in order to compute the relationship between normalized hysteretic energy, maximum inter-story drift and roof displacement demands were performed. The results shown that the entire structural frames participate in energy dissipation and their distribution is independent of the global ductility. The results let propose energy distribution equations through height. Finally, response transformation factors between the SDOF and multi degree of freedom (MDOF) systems were developed aimed to propose a new energy-based approach of BRB reinforced concrete buildings.

Enhancing the Fire Performance of Concrete-Filled Steel Columns through System-Level Analysis

  • Fike, R.S.;Kodur, V.K.R.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • The use of concrete filling offers a practical alternative for achieving the required stability of steel Hollow Structural Section (HSS) columns under fire conditions. However, current methods for evaluating fire resistance of Concrete Filled Hollow Structural Steel (CFHSS) columns are highly conservative as they are based on an elemental approach without due consideration to structural interactions that occur in framed structural systems. To overcome this limitation, a system level fire resistance analysis was carried out by treating CFHSS columns as part of an overall structural frame. In this analysis, an eight story steel-framed building was modeled under a range of standard and performance-based fire scenarios (including multi-story progressive burn-out fires) to evaluate the contribution of various structural members/assemblies to overall fire resistance. One of the primary factors considered was the use of concrete filling in HSS columns as an alternative to standard W-shape columns. Results from the analysis indicate that the use of CFHSS columns, in place of W-shape columns, in a performance-based environment can fully eliminate the need for applied fire protection to columns, while providing the required level of structural fire resistance.