• 제목/요약/키워드: multi-span system

검색결과 121건 처리시간 0.023초

Influence of time-varying attenuation effect of damage index on seismic fragility of bridge

  • Yan, Jialei;Liang, Yan;Zhao, Boyang;Qian, Weixin;Chen, Huai
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.287-301
    • /
    • 2020
  • Fragility as one of the most effective methods to evaluate seismic performance, which is greatly affected by damage index. Taking a multi span continuous rigid frame offshore bridge as an example. Based on fragility and reliability theory, considering coupling effect of time-varying durability damage of materials and time-varying attenuation effect of damage index to analyze seismic performance of offshore bridges. Results show that IDA curve considering time-varying damage index is obviously below that without considering; area enclosed by IDA of 1# pier and X-axis under No.1 earthquake considering this effect is 96% of that without considering. Area enclosed by damage index of 1# pier and X-axis under serious damage with considering time-varying damage index is 90% of that without considering in service period. Time-varying damage index has a greater impact on short pier when ground motion intensity is small, while it has a great impact on high pier when the intensity is large. The area enclosed by fragility of bridge system and X-axis under complete destruction considering time-varying damage index is 165% of that without considering when reach designed service life. Therefore, time-varying attenuation effect of damage index has a great impact on seismic performance of bridge in service period.

Numerical simulation of aerodynamic characteristics of a BWB UCAV configuration with transition models

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.8-18
    • /
    • 2015
  • A numerical simulation for a nonslender BWB UCAV configuration with a rounded leading edge and span of 1.0 m was performed to analyze its aerodynamic characteristics. Numerical results were compared with experimental data obtained at a free stream velocity of 50 m/s and at angles of attack from -4 to $26^{\circ}$. The Reynolds number, based on the mean chord length, is $1.25{\times}106$. 3D multi-block hexahedral grids are used to guarantee good grid quality and to efficiently resolve the boundary layer. Menter's shear stress transport model and two transition models (${\gamma}-Re_{\theta}$ model and ${\gamma}$ model) were used to assess the effect of the laminar/turbulent transition on the flow characteristics. Aerodynamic coefficients, such as drag, lift, and the pitching moment, were compared with experimental data. Drag and lift coefficients of the UCAV were predicted well while the pitching moment coefficient was underpredicted at high angles of attack and influenced strongly by the selected turbulent models. After assessing the pressure distribution, skin friction lines and velocity field around UCAV configuration, it was found that the transition effect should be considered in the prediction of aerodynamic characteristics of vortical flow fields.

Unified equivalent frame method for flat plate slab structures under combined gravity and lateral loads - Part 2: verification

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.735-751
    • /
    • 2014
  • In the previous paper, authors proposed the unified equivalent frame method (UEFM) for the lateral behavior analysis of the flat plate structure subjected to the combined gravity and lateral loads, in which the rotations of torsional members were distributed to the equivalent column and the equivalent slab according to the relative ratio of gravity and lateral loads. In this paper, the lateral behavior of the multi-span flat plate structures under various levels of combined gravity and lateral loads were analyzed by the proposed UEFM, which were compared with test results as well as those estimated by existing models. In addition, to consider the stiffness degradation of the flat plate system after cracking, the stiffness reduction factors for torsional members were derived from the test results of the interior and exterior slab-column connection specimens, based on which the simplified nonlinear push-over analysis method for flat plate structures was proposed. The simplified nonlinear analysis method provided good agreements with test results and is considered to be very useful for the practical design of the flat plate structures under the combined gravity and lateral loads.

Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network

  • Gao, Ke;Chen, Zhi-Dan;Weng, Shun;Zhu, Hong-Ping;Wu, Li-Ying
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.129-140
    • /
    • 2022
  • The effectiveness of system identification, damage detection, condition assessment and other structural analyses relies heavily on the accuracy and reliability of the measured data in structural health monitoring (SHM) systems. However, data anomalies often occur in SHM systems, leading to inaccurate and untrustworthy analysis results. Therefore, anomalies in the raw data should be detected and cleansed before further analysis. Previous studies on data anomaly detection mainly focused on just single type of data anomaly for denoising or removing outliers, meanwhile, the existing methods of detecting multiple data anomalies are usually time consuming. For these reasons, recognising multiple anomaly patterns for real-time alarm and analysis in field monitoring remains a challenge. Aiming to achieve an efficient and accurate detection for multi-type data anomalies for field SHM, this study proposes a pattern-recognition-based data anomaly detection method that mainly consists of three steps: the feature extraction from the long time-series data samples, the training of a pattern recognition neural network (PRNN) using the features and finally the detection of data anomalies. The feature extraction step remarkably reduces the time cost of the network training, making the detection process very fast. The performance of the proposed method is verified on the basis of the SHM data of two practical long-span bridges. Results indicate that the proposed method recognises multiple data anomalies with very high accuracy and low calculation cost, demonstrating its applicability in field monitoring.

계측 거동 데이터를 이용한 부분구조 모델의 식별 (Identification of Substructure Model using Measured Response Data)

  • 오성호;이상민;신수봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권2호
    • /
    • pp.137-145
    • /
    • 2004
  • 본 연구에서는 구조성질들이 제대로 평가되지 않은 구조물의 부분구조 모델을 설정하는 방법을 제시한다. 본 연구에서는 부분구조 모델을 정의하기 위해 구조물의 대상 부분구조에서 계측한 구조거동치를 필요로 하며, 부분구조 모델은 부분구조 자체의 강성도변수와 경계스프링 계수를 추정하여 설정한다. 정적 및 주파수영역 SI(system identification) 기법들이 부분구조의 제한된 위치에서 측정된 거동치를 사용하여 적용되었다. 정적거동과 동적거동 계측 각각에 대한 시뮬레이션 연구가 수행되었으며, 연구결과 및 문제점들이 검토되었다. 시뮬레이션 연구에서 검증된 절차에 따라 이동트럭과 시공발파에 의한 동적거동 계측치를 사용하여 실제의 다경간 플레이트 거더 게르버교의 부분구조 모델 설정을 수행하였다.

거주자 참여형 공동주거의 평면계획에 적용된 가변성의 특성 - 유럽의 거주자 참여형 다층 공동주거를 중심으로 - (The Characteristics of Flexibility applied to Unit Plan of Housing by Residents Participation - focusing on European Multi-story Housing applying Residents Participation -)

  • 김현주
    • 대한건축학회논문집:계획계
    • /
    • 제34권11호
    • /
    • pp.113-123
    • /
    • 2018
  • First of all, the multi-story Housing applying resident's participation in europe was classified by the menu selection method, the two-step supply method and the cooperative method. And then I analyzed flexible unit plan of cases for deriving the planning methode and the characteristics of flexibility. First, I analyzed the area and form of the unit plan, structure and Installation, fixed and variable elements to derive the planning method. The area of units are distributed from a minimum of $35m^2$ to a maximum of $150m^2$, and many of the unit planes have a narrow front and a deep depth. The structure is a long-span wall-structure or a skeleton structure, and is designed without any columns and bearing walls in the interior space for flexibility in spatial composition. The vertical shafts are located in the center of the unit in a box-form or in the corner at the unit dividing wall for free placement of interior wall. Fixed elements are framework and facility systems. Most of the future residents in the two-steps supply method and the cooperative method were able to freely design the internal space within the zoning concept proposed by the architect and change the location of the facade element within module system proposed by the architect. Second, the characteristics of the flexibility applied to the unit plan were divided in integrated flexibility, functional flexibility, construction flexibility, and supply flexibility. The integrated flexibility enables residents to give the variable space combination based on the complex structure of the inner space for providing various living experiences. Regarding functional flexibility, the three-dimensional spatial structure with neutral space has multi-functionality according to the needs of residents and easily accepts mixing of hybrid programs such as work and residence. Constructive flexibility allows residents to create identity by freely planning interior space and changing the size or location of facade components in a determined system of architects. Finally, various types of size and space composition are proposed and realized in the whole building applying menu selection method, so that flexibility in the offer can accommodate and integrate various types of living.

경북지방 시설과채류의 생리장해 발생조사 (Survey of Physiological Disorders in Greenhouse Fruit Vegetables in Kyungbuk Province)

  • 황재문;엄정식;이영근
    • 원예과학기술지
    • /
    • 제17권6호
    • /
    • pp.737-741
    • /
    • 1999
  • 본 조사는 생리장해 연구의 기초자료를 얻기 위하여 1998년에 경북 시설 과채류 주산지에서 재배실태와 생리장해에 대하여 농가 현장방문을 통하여 실시되었다. 재배시설의 형태는 단동 또는 연동의 철 파이프 PE하우스가 대부분이며, 딸기, 참외, 수박은 단동 PE하우스, 그리고 토마토와 오이는 연동하우스를 이용하였다. 전체 조사농가 중 단작의 비율은 56.8%, 그리고 윤작은 40.9%로 나타났다. 시설내의 관수는 점적만 하는 농가는 전체 농가의 38.6%이다. 연작연수는 전제적으로 5년 미만의 농가가 38.1%였으며, 10년 이상 된 농가도 20.5%에 달하였다. 재배품종은 작물별로 다양하나, 특히 오이와 수박에서 다양하였다. 딸기의 기형과는 3월에 발생이 많았고 수확종기에 소과가 나타났다. 영양결핍에 의한 황화증상은 5월 이후에 많았고, 월동기에 왜화와 생육초기에 런너발생 등이 관찰되었다. 토마토는 9~11월에 열과, 10월과 2~4월에 기형과, 7~9월에 배꼽썩음과 등이 심하였으며, 순멎이, 이상경, 영양결핍증 등도 관찰되었다. 오이는 곡과, 곤봉과, 어깨빠진과 등 기형과는 11~12월에 심하게 나타났으며, 5~7월에 낙하산엽 증상 등이 조사되었다. 참외의 기형과와 발효과는 3~5월에 심하였고 수박의 열과도 4~5월에 많았으며 변형과는 8월에 나타났다. 식물체에는 영양결핍인 황화증상이 다수의 농가에서 발견되었다. 생리장해에 대한 인식은 병해충에 대한 인식보다 강하지 못할 뿐 아니라 장해의 동정이나 방제법에 소홀한 점들이 많았다. 생리장해 발생원인으로는 토양환경 불량과 온도관리의 미흡이라고 응답하였으며 대책으로는 하우스 환경관리를 잘 해야 한다고 대부분의 농가가 응답하였다.

  • PDF

Analysis of corrugated steel web beam bridges using spatial grid modelling

  • Xu, Dong;Ni, Yingsheng;Zhao, Yu
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.853-871
    • /
    • 2015
  • Up to now, Japan has more than 200 corrugated steel web composite beam bridges which are under construction and have been constructed, and China has more than 30 corrugated steel web composite beam bridges. The bridge type includes the simply supported beam, continuous beam, continuous rigid frame and cable stayed bridge etc. The section form has developed to the single box and multi-cell box girder from the original single box and single chamber. From the stress performance and cost saving, the span range of 50~150 m is the most competitive. At present, the design mostly adopts the computational analytical method combining the spatial bar system model, plane beam grillage model and solid model. However, the spatial bar system model is short of the refinement analysis on the space effect, such as the shear lag effect, effective distribution width problem, and eccentric load factor problem etc. Due to the similarity of the plane beam grillage method in the equivalence principle, it cannot accurately reflect the shearing stress distribution and local stress of the top and bottom plates of the box type composite beam. The solid model is very difficult to combine with the overall calculation. Moreover, the spatial grid model can achieve the refinement analysis, with the integrity of the analysis and the comprehensiveness of the stress checking calculation, and can make up the deficiency of the analytical method currently. Through the example verification of the solid model and spatial grid model, it can be seen that the calculation results for the stress and the displacement of two models are almost consistent, indicating the applicability and precision of the spatial grid model.

Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data

  • Elawady, Amal;Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.71-88
    • /
    • 2018
  • At the University of Western Ontario (UWO), numerical tools represented in semi-closed form solution for the conductors and finite element modeling of the lattice tower were developed and utilized significantly to assess the behavior of transmission lines under downburst wind fields. Although these tools were validated against other finite element analyses, it is essential to validate the findings of those tools using experimental data. This paper reports the first aeroelastic test for a multi-span transmission line under simulated downburst. The test has been conducted at the three-dimensional wind testing facility, the WindEEE dome, located at the UWO. The experiment considers various downburst locations with respect to the transmission line system. Responses obtained from the experiment are analyzed in the current study to identify the critical downburst locations causing maximum internal forces in the structure (i.e., potential failure modes), which are compared with the failure modes obtained from the numerical tools. In addition, a quantitative comparison between the measured critical responses obtained from the experiment with critical responses obtained from the numerical tools is also conducted. The study shows a very good agreement between the critical configurations of the downburst obtained from the experiment compared to those predicted previously by different numerical studies. In addition, the structural responses obtained from the experiment and those obtained from the numerical tools are in a good agreement where a maximum difference of 16% is found for the mean responses and 25% for the peak responses.

The effect of different tornado wind fields on the response of transmission line structures

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hamada, Mohamed
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.215-230
    • /
    • 2022
  • Majority of transmission line system failures at many locations worldwide have been caused by severe localized wind events in the form of tornadoes and downbursts. This study evaluates the structural response of two different transmission line systems under equivalent F2 tornadoes obtained from real incidents. Two multi-span self-supported transmission line systems are considered in the study. Nonlinear three-dimensional finite element models are developed for both systems. The finite element models simulate six spans and five towers. Computational Fluid Dynamics (CFD) simulations are used to develop the tornado wind fields. Using a proper scaling method for geometry and velocity, full-scale tornado flow fields for the Stockton, KS, 2005 and Goshen County WY, 2009 are developed and considered together with a previously developed tornado wind field. The tornado wind profiles are obtained in terms of tangential, radial, and axial velocities. The simulated tornadoes are then normalized to the maximum velocity value for F2 tornadoes in order to compare the effect of different tornadoes having an equal magnitude. The tornado wind fields are incorporated into a three-dimensional finite element model. By varying the location of the tornado relative to the transmission line systems, base shears of the tower of interest and peak internal forces in the tower members are evaluated. Sensitivity analysis is conducted to assess the variation of the structural behaviour of the studied transmission lines associated with the location of the tornado relative to the tower of interest. The tornado-induced forces in both lines due to the three different normalized tornadoes are compared with corresponding values evaluated using the simplified load case method recently incorporated in the ASCE-74 (2020) guidelines, which was previously developed based on the research conducted at Western University.