• Title/Summary/Keyword: multi-solute sorption

Search Result 2, Processing Time 0.018 seconds

Effect of pH and ionic strength on the removal of radionuclide by Na-mica (pH와 이온강도가 나트륨-운모를 이용한 방사성 핵종 흡착제거에 미치는 영향)

  • Seol, Bitna;Cho, Yunchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The aim of this study is to investigate the sorption/ion exchange of radioactive nuclides such as $Cs^+$ and $Sr^{2+}$ by synthetic Na-micas. In order to prepare Na-micas, two natural micas (phlogopite and biotite) were used as precursor materials. XRD, SEM, and EDS analyses were used to examine material characterization of synthetic Na-micas. Analyses of materials revealed that Na-micas were successfully obtained from natrual micas by K removal treatment. On the other hand, single solute (Cs or Sr) and bi-solute (Cs/Sr) sorption experiments were carried out to determine sorption capacity of Na-micas for Cs and Sr under different pH and ionic strength conditions. Uptake of Cs and Sr by micas in bi-solute system was lower than in single-solute system. Additionally, Langmuir and Langmuir competitive models were applied to describe sorption isotherm of Na-micas. bi-solute system was well described by Langmuir competitive models. For the results obtained in this study, Na-micas could be promising sorbents to treat multi-radioactive species from water and groundwater.

Application of nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater

  • Md Abdullah Al Masud;Won Sik Shin
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM-PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi-Ozmıhci (K-O), Koble-Corrigan (K-C), and Langmuir-Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385-0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g-1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST-Fr, IAST-K-O, IAST-K-C and IAST-Lang-Fr, were fitted to the experimental data; among these, the IAST-Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.