• 제목/요약/키워드: multi-scaled face

검색결과 3건 처리시간 0.026초

Multi-Face Detection on static image using Principle Component Analysis

  • Choi, Hyun-Chul;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.185-189
    • /
    • 2004
  • For face recognition system, a face detector which can find exact face region from complex image is needed. Many face detection algorithms have been developed under the assumption that background of the source image is quite simple . this means that face region occupy more than a quarter of the area of the source image or the background is one-colored. Color-based face detection is fast but can't be applicable to the images of which the background color is similar to face color. And the algorithm using neural network needs so many non-face data for training and doesn't guarantee general performance. In this paper, A multi-scale, multi-face detection algorithm using PCA is suggested. This algorithm can find most multi-scaled faces contained in static images with small number of training data in reasonable time.

  • PDF

다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출 (Eye Localization based on Multi-Scale Gabor Feature Vector Model)

  • 김상훈;정수환;오두식;김재민;조성원;정선태
    • 한국콘텐츠학회논문지
    • /
    • 제7권1호
    • /
    • pp.48-57
    • /
    • 2007
  • 눈좌표 검출은 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈좌표 검출 방법은 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 다중스케일 가버 특징 벡터 모델 기반의 개선된 눈좌표 검출 방법을 제안한다. 제안된 방법은 먼저 다운샘플링된 입력 얼굴 이미지에서 초기 눈좌표에서의 가버 특징 벡터와 해당 스케일의 눈 모델 번치와의 가버젯 유사도를 이용하여 눈좌표를 추정한다. 이후 추정된 눈좌표를 상위 스케일의 얼굴 이미지에서의 눈좌표 초기값으로 취하고 상위 스케일 얼굴 이미지에서 같은 방법으로 눈좌표를 찾으며, 이를 반복적으로 하여 최종적으로 원래 얼굴 이미지에서의 눈좌표를 확정한다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 모델 기반 눈좌표 검출 방법이 계산량은 크게 증가시키지 않으면서 기존 연구들에서 보고된 다른 눈좌표 검출 방법에 비해 정확도가 개선된 검출 방법임을 확인하였다.

드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가 (Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV)

  • 류재현;오도혁;장선웅;정회정;문경환;조재일
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.1055-1066
    • /
    • 2018
  • 식생의 광학적 특성을 기반으로 만들어진 식생지수들은 식물의 생물생산량뿐만 아니라 생리적 활성을 나타내고 있다. 식생지수의 활용은 위성에 장착된 다중분광 광학 센서의 발달에 힘입은 바가 크지만, 관측 공간규모에 따라 식생지수의 민감도가 달라질 수 있어 여러 규모에서의 비교 관측이 요구된다. 특히 광화학반사지수(PRI, Photochemical Reflectance Index)는 광합성능과 식물 스트레스 탐지에 유용한 것으로 알려져 있지만 올바른 해석을 위한 다양한 공간규모에서의 선행연구가 드물다. 본 연구에서는 드론에 장착된 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계를 이용해 마늘 작물을 대상으로 서로 다른 공간규모의 PRI를 평가하였다. 잎 규모에서 하루 중 PRI는 잎의 윗면이 향하는 방위에 따라 서로 다른 시간에 최저값을 보였으며, 이는 어떤 순간에 잎마다 다른 광이용효율(LUE, Light Use Efficiency) 상태라는 것을 의미한다. 잎 규모에서는 식생피복율에 영향을 받지 않으므로 PRI 생물계절적 변화는 생육 초기에 개체 및 군락 규모보다 값이 높게 나타났다. 개체 및 군락 규모에서 PRI는 생물량을 나타내는 NDVI(Normalized Difference Vegetation Index)와는 달리 공간적 변동성이 크게 나타났다. 반면, 지상의 개체들 규모의 식생지수를 드론 영상의 관측 지점 값과 비교해 보면 NDVI에 비해 PRI가좀더 좋은 일치도를 보였다. 이러한 결과는 서로 다른 공간규모에서 관측된 PRI를 이해하고 활용하는데 도움이 될 것이다.