• 제목/요약/키워드: multi-satellite sensor

검색결과 138건 처리시간 0.027초

다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구 (A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images)

  • 강원빈;정민영;김용일
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1505-1514
    • /
    • 2022
  • 영상정합은 다시기 및 다중센서 고해상도 위성영상을 효과적으로 활용하기 위해 필수적으로 선행되는 중요한 과정이다. 널리 각광받고 있는 딥러닝 기법은 위성영상에서 복잡하고 세밀한 특징을 추출하여 영상 간 빠르고 정확한 유사도 판별에 사용될 수 있음에도 불구하고, 학습자료의 양과 질이 결과에 영향을 미치는 딥러닝 모델의 한계와 고해상도 위성영상 기반 학습자료 구축의 어려움에 따라 고해상도 위성영상의 정합에는 제한적으로 적용되어 왔다. 이에 본 연구는 영상정합에서 가장 많은 시간을 소요하는 정합쌍 추출 과정에서 딥러닝 기반 기법의 적용성을 확인하기 위하여, 편향성이 존재하는 고해상도 위성영상 데이터베이스로부터 딥러닝 영상매칭 학습자료를 구축하고 학습자료의 구성이 정합쌍 추출 정확도에 미치는 영향을 분석하였다. 학습자료는 12장의 다시기 및 다중센서 고해상도 위성영상에 대하여 격자 기반의 Scale Invariant Feature Transform(SIFT) 알고리즘을 이용하여 추출한 영상쌍에 참과 거짓의 레이블(label)을 할당한 정합쌍과 오정합쌍의 집합으로 구축되도록 하였다. 구축된 학습자료로부터 정합쌍 추출을 위해 제안된 Siamese convolutional neural network (SCNN) 모델은 동일한 두 개의 합성곱 신경망 구조에 한 쌍을 이루는 두 영상을 하나씩 통과시킴으로써 학습을 진행하고 추출된 특징의 비교를 통해 유사도를 판별한다. 본 연구를 통해 고해상도 위성영상 데이터 베이스로부터 취득된 자료를 딥러닝 학습자료로 활용 가능하며 이종센서 영상을 적절히 조합하여 영상매칭 과정의 효율을 높일 수 있음을 확인하였다. 다중센서 고해상도 위성영상을 활용한 딥러닝 기반 영상매칭 기법은 안정적인 성능을 바탕으로 기존 수작업 기반의 특징 추출 방법을 대체하고, 나아가 통합적인 딥러닝 기반 영상정합 프레임워크로 발전될 것으로 기대한다.

Global environment change monitoring using the next generation satellite sensor, SGLI/GCOM-C

  • HONDA Yoshiaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.11-13
    • /
    • 2005
  • The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded that many collective observations gave a aspect of a global warming and other changes in the climate system. Future earth observation using satellite data should monitor global climate change, and should contribute to social benefits. Especially, human activities has given the big impacts to earth environment This is a very complex affair, and nature itself also impacts the clouds, namely the seasonal variations. JAXA (former NASDA) has the plan of the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation GLI) onboard GCOM-C (Climate) satellite, which is one of this mission, is an optical sensor from Near-UV to TIR. This sensor is the GLI follow-on sensor, which has the various new characteristics. Polarized/multi-directional channels and 250m resolution channels are the unique characteristics on this sensor. This sensor can be contributed to clarification of coastal change in sea surface. This paper shows the introduction of the unique aspects and characteristics of the next generation satellite sensor, SGLIIGCOM-C, and shows the preliminary research for this sensor.

  • PDF

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • 제3권1호
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

MULTI-SENSOR DATA FUSION FOR FUTURE TELEMATICS APPLICATION

  • Kim, Seong-Baek;Lee, Seung-Yong;Choi, Ji-Hoon;Choi, Kyung-Ho;Jang, Byung-Tae
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.359-364
    • /
    • 2003
  • In this paper, we present multi-sensor data fusion for telematics application. Successful telematics can be realized through the integration of navigation and spatial information. The well-determined acquisition of vehicle's position plays a vital role in application service. The development of GPS is used to provide the navigation data, but the performance is limited in areas where poor satellite visibility environment exists. Hence, multi-sensor fusion including IMU (Inertial Measurement Unit), GPS(Global Positioning System), and DMI (Distance Measurement Indicator) is required to provide the vehicle's position to service provider and driver behind the wheel. The multi-sensor fusion is implemented via algorithm based on Kalman filtering technique. Navigation accuracy can be enhanced using this filtering approach. For the verification of fusion approach, land vehicle test was performed and the results were discussed. Results showed that the horizontal position errors were suppressed around 1 meter level accuracy under simulated non-GPS availability environment. Under normal GPS environment, the horizontal position errors were under 40㎝ in curve trajectory and 27㎝ in linear trajectory, which are definitely depending on vehicular dynamics.

Bi-directional Reflectance Effects on Mangrove Classification of IKONOS Multi-angular Images

  • Rubio, M.C.D.;Nadaoka, K.;Paringit, E.C.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.4-6
    • /
    • 2003
  • Optical signals from an object may vary at different conditions caused by differences in light source and sensor position. Knowledge of these variations is necessary to enable calibration of the satellite images and confirmation of the sun and sensor angles influences of the spectral signals from the objects. With the use high -resolution Ikonos$^{TM}$ multi-angular images, the bi- directional reflectance effects of mangrove trees were observed when three datasets were compared. The influence of bi- directional reflectance may affect the accuracy of interpreting satellite imagery and obtaining biophysical parameters mangrove and other vegetation by indirect means.

  • PDF

KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합 (Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery)

  • 김태헌;윤예린;이창희;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1901-1910
    • /
    • 2022
  • 뉴스페이스(new space) 시대가 도래함에 따라 국내 KOMPSAT-3·3A 위성영상과 해외 위성영상과의 글로벌 융합활용 기술확보가 대두되고 있다. 일반적으로 다중센서 위성영상은 취득 당시의 다양한 외부요소로 인해 영상 간 상대적인 기하오차(relative geometric error)가 발생하며, 이로 인해 위성영상 산출물의 품질이 저하된다. 따라서 본 연구에서는 KOMPSAT-3·3A 위성영상과 해외 위성영상 간 존재하는 상대기하오차를 최소화하기 위한 정밀영상정합(fine-image registration) 방법론을 제안한다. KOMPSAT-3·3A 위성영상과 해외 위성영상 간 중첩영역을 선정한 후 두 영상 간 공간해상도를 통일한다. 이어서, 특징 및 영역 기반 정합기법을 결합한 형태의 하이브리드(hybrid) 정합기법을 이용하여 정합점(tie-point)을 추출한다. 그리고 피라미드(pyramid) 영상 기반의 반복적 정합을 수행하여 정밀영상정합을 수행한다. KOMPSAT-3·3A 위성영상과 Sentinel-2A 및 PlanetScope 영상을 이용하여 제안기법의 정확도 및 성능을 평가하였다. 그 결과, Sentienl-2A 영상 기준 평균 Root Mean Square Error (RMSE) 1.2 pixels, PlanetScope 영상 기준 평균 RMSE 3.59 pixels의 정확도가 도출되었다. 이를 통해 제안기법을 이용하여 효과적으로 정밀영상정합을 수행할 수 있을 것으로 사료된다.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제31권4호
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.