• Title/Summary/Keyword: multi-rotor

Search Result 240, Processing Time 0.033 seconds

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed (정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • As wind turbines are getting larger in size with multi-MW capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, "wind shear coefficient of thrust variation" is defined and introduced. Further, we calculate the values of the "wind shear coefficient of thrust variation" for a 2 MW on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and "wind shear coefficient of thrust variation."

A Study on Partial Admission Characteristics of a Multi-Stage Small-Scaled Turbine (다단 소형 터빈에서의 부분분사 특성에 관한 연구)

  • Cho, Chong-Hyun;Jeong, Woo-Chun;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.943-954
    • /
    • 2010
  • In this study, a radial inflow type turbine was applied and the outer diameter of the turbine rotor was 108 mm. The turbine blade on a circular plate disc was designed as an axial-type because its partial admission rate was 1.4-4.1%. The turbine consisted of three stages. The performance test has been conducted with various admission rates, tip clearances and nozzle flow angles. The turbine output power was measured on each stage. The turbine performance was obtained in a wide rotational speed range in order to compare its performance according to various operating conditions. The net specific output torque was also measured to compare its overall performance. Computational analysis was conducted for predicting turbine performance. The computed results were in good agreement with the experimental results.

Verification of Roll Angle Estimation Performance of Slowly Rolling Guided Munition by Flight Experiment (비행 시험을 통한 저속 회전 유도형 탄약의 롤각 추정 성능 검증)

  • Park, Junwoo;Jung, Wooyoung;Bang, Hyochoong;Kim, Jin-Won;Heo, Junhoe;Pak, Chang-Ho;Seo, Songwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.681-689
    • /
    • 2020
  • This paper presents methods and results of both flight test examining roll angle estimation performance of slowly rolling munition forced to spin in the air, and fabricating a replica of guided munition. Guided munition was deployed from multi rotor type UAV mother ship whose altitude and velocity was conveyed to it as initial state. Flight test scenario is composed of a sequence of munition drop(deployment), munition spin, roll angle estimation and stabilization. Munition was deployed from mother ship at around 200m high with horizontal velocity of 15m/s, and was made spun using internal reaction wheel. Performance analysis on roll angle estimation is provided in comparison with commercial aerospace graded GPS/INS. Moreover, several mechanisms that rotates munition using reaction wheel, and actual product that realizes one of them are introduced.

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

CNN based dual-channel sound enhancement in the MAV environment (MAV 환경에서의 CNN 기반 듀얼 채널 음향 향상 기법)

  • Kim, Young-Jin;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1506-1513
    • /
    • 2019
  • Recently, as the industrial scope of multi-rotor unmanned aerial vehicles(UAV) is greatly expanded, the demands for data collection, processing, and analysis using UAV are also increasing. However, the acoustic data collected by using the UAV is greatly corrupted by the UAV's motor noise and wind noise, which makes it difficult to process and analyze the acoustic data. Therefore, we have studied a method to enhance the target sound from the acoustic signal received through microphones connected to UAV. In this paper, we have extended the densely connected dilated convolutional network, one of the existing single channel acoustic enhancement technique, to consider the inter-channel characteristics of the acoustic signal. As a result, the extended model performed better than the existed model in all evaluation measures such as SDR, PESQ, and STOI.

A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance (컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법)

  • 지은미;윤호섭;이상호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.809-817
    • /
    • 2002
  • This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.