• Title/Summary/Keyword: multi-phase composite

Search Result 80, Processing Time 0.025 seconds

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

Temperature-dependent multi-phase-lags theory on a magneto-thermoelastic medium with microtemperatures

  • Samia M. Said
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.489-497
    • /
    • 2024
  • A temperature-dependent generalized thermoelasticity is constructed in the context of a new consideration of the multi-phase-lags model. The theory is then adopted to study wave propagation in anisotropic homogenous generalized magneto-thermoelastic medium under the influence of gravity whose boundary is subjected to thermal and mechanical loading. The basic equations of the problem are solved by using normal mode analysis. The numerical quantities of physical interest are obtained and depicted graphically. Some comparisons of the results are shown in figures to study the effects of the magnetic field, temperature discrepancy, and the gravity field.

Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.87-101
    • /
    • 2020
  • A multi-scale epoxy/CNT/fiberglass annular sector plate is studied in this paper in the view of determining nonlinear forced vibration characteristics. A 3D Mori-Tanaka model is employed for evaluating multi-scale material properties. Thus, all of glass fibers are assumed to have uni-direction alignment and CNTs have random diffusion. The geometry of annular sector plate can be described based on the open angle and the value of inner/outer radius. In order to solve governing equations and derive exact forced vibration curves for the multi-scale annular sector, Jacobi elliptic functions are used. Obtained results demonstrate the significance of CNT distribution, geometric nonlinearity, applied force, fiberglass volume, open angle and fiber directions on forced vibration characteristics of multi-scale annular sector plates.

Topology optimization of variable thickness Reissner-Mindlin plate using multiple in-plane bi-directional functionally graded materials

  • Nam G. Luu;Thanh T. Banh;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.583-597
    • /
    • 2023
  • This paper introduces a novel approach to multi-material topology optimization (MTO) targeting in-plane bi-directional functionally graded (IBFG) non-uniform thickness Reissner-Mindlin plates, employing an alternative active phase approach. The mathematical formulation integrates a first shear deformation theory (FSDT) to address compliance minimization as the objective function. Through an alternating active-phase algorithm in conjunction with the block Gauss-Seidel method, the study transforms a multi-phase topology optimization challenge with multi-volume fraction constraints into multiple binary phase sub-problems, each with a single volume fraction constraint. The investigation focuses on IBFG materials that incorporate adequate local bulk and shear moduli to enhance the precision of material interactions. Furthermore, the well-established mixed interpolation of tensorial components 4-node elements (MITC4) is harnessed to tackle shear-locking issues inherent in thin plate models. The study meticulously presents detailed mathematical formulations for IBFG plates in the MTO framework, underscored by numerous numerical examples demonstrating the method's efficiency and reliability.

Predicting Thermo-mechanical Characteristics from the 2nd Phase Fraction of Al-AlN Composites for LED Heat Sinks with FEM (유한요소해석을 이용한 방열용 Al-AlN 복합재의 제2상 분율에 따른 열-기계적 특성예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.137-142
    • /
    • 2018
  • With the development of the electronic-materials industry, multi-functional metal-composite materials with high thermal conductivity and low thermal expansion must be developed for high reliability and high life expectancy. This paper is a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the equivalent thermal properties of Al-AlN composite materials. Numerical equivalent property values are obtained by using finite element analysis and compared with theoretical formulas. Al-AlN composite materials should become the optimal composite material when the proportion of the reinforcing phase is less than 0.5.

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide

  • Oh, Won-Chun;Chen, Ming-Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.159-164
    • /
    • 2008
  • Two kinds of CNT/TiO2 composite photocatalysts were synthesized with multi-walled carbon nanotubes (MWCNTs) and titanium(IV) n-butoxide (TNB) by a MCPBA oxidation method. Since MWCNTs had charge transfer and semiconducting, the CNT/TiO2 composite shows a good photo-degradation activity. The XRD patterns reveal that only anatase phase can be identified for MCT composite, but the HMCT composite synthesized with HCl treatment was observed the mixed phase of anatase and rutile. The EDX spectra were shown the presence as major elements of Ti with strong peaks. From the SEM results, the sample MCT and HMCT synthesized by the thermal decomposition with TNB show a homogenous sample with only individual MWCNTs covered with TiO2 without any jam-like aggregates between CNTs and TiO2. From the photocatalytic results, we could be suggested that the excellent activity of the CNT/TiO2 composites for organic dye and UV irradiation time could be attributed to combination effects between TiO2 and MWCNTs with plausible photodegradation mechanism.

Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.343-351
    • /
    • 2020
  • The present research deals with the multi-dual-phase-lags thermoelasticity theory for thermoelastic behavior of transversely isotropic thermoelastic thin circular plate The Laplace and Hankel transform techniques have been used to find the solution of the problem. The displacement components, stress components, and conductive temperature distribution are computed in the transformed domain with the radial distance and further determined in the physical domain using numerical inversion techniques. The effect of rotation and two temperature are depicted graphically on the resulting quantities.