• Title/Summary/Keyword: multi-perceptron

Search Result 474, Processing Time 0.025 seconds

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

Neurocontrol architecture for the dynamic control of a robot arm (로보트 팔의 동력학적제어를 위한 신경제어구조)

  • 문영주;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.280-285
    • /
    • 1991
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, a learning control architecture for the dynamic control of a robot manipulator is developed using inverse dynamic neurocontroller and linear neurocontroher. The inverse dynamic neurocontrouer consists of a MLP (multi-layer perceptron) and the linear neurocontroller consists of SLPs (single layer perceptron). Compared with the previous type of neurocontroller which is using an inverse dynamic neurocontroller and a fixed PD gain controller, proposed architecture shows the superior performance over the previous type of neurocontroller because linear neurocontroller can adapt its gain according to the applied task. This superior performance is tested and verified through the control of PUMA 560. Without any knowledge on the dynamic model, its parameters of a robot , (The robot is treated as a complete black box), the neurocontroller, through practice, gradually and implicitly learns the robot's dynamic properties which is essential for fast and accurate control.

  • PDF

A Design of Multilayer Perceptron for Camera Calibration

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.239-246
    • /
    • 2002
  • In this paper a new design of multi-layer perceptron(MLP) for camera calibration is proposed. Most existing techniques determine a transformation from 3D spatial points to their image points and camera parameters are tried to be estimated from the transformation. The technique proposed here, on the other hand, determines rays of sight uniquely from image points and parameters are estimated from the relationship using an MLP. By this approach projection and back-projection can be done more straightforwardly. Being based on a geometric model, a network design process becomes less ambiguous, which is a clear merit compared to other neural net based techniques. An MLP designed according to the technique proposed showed fast and stable learning in tests under various conditions.

Optimal Design of Fuzzy Hybrid Multilayer Perceptron Structure (퍼지 하이브리드 다층 퍼셉트론구조의 최적설계)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2977-2979
    • /
    • 2000
  • A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.

  • PDF

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

A Terminal Ballistic Performance Prediction of Multi-Layer Armor with Neural Network (신경회로망을 이용한 다층장갑의 방호성능 예측)

  • 유요한;김태정;양동열
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.189-201
    • /
    • 2001
  • For a design of multi-layer armor, the extensive full scale or sub-scale penetration test data are required. In generally, the collection of penetration data is in need of time-consuming and expensive processes. However, the application of numerical or analytical method is very limited due to poor understanding about penetration mechanics. In this paper, we have developed a neural network analyzer which can be used as a design tool for a new armor. Calculation results show that the developed neural network analyzer can predict relatively exact penetration depth of a new armor through the effective analysis of the pre-existing penetration database.

  • PDF

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

In-plane and out-of-plane bending moments and local stresses in mooring chain links using machine learning technique

  • Lee, Jae-bin;Tayyar, Gokhan Tansel;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.848-857
    • /
    • 2021
  • This paper proposes an efficient approach based on a machine learning technique to predict the local stresses on mooring chain links. Three-link and multi-link finite element analyses were conducted for a target chain link of D107 with steel grade R4; 24,000 and 8000 analyses were performed, respectively. Two serial Artificial Neural Network (ANN) models based on a deep multi-layer perceptron technique were developed. The first ANN model corresponds to multi-link analyses, where the input neurons were the tension force and angle and the output neurons were the interlink angles. The second ANN model corresponds to the three-link analyses with the input neurons of the tension force, interlink angle, and the local stress positions, and the output neurons of the local stress. The predicted local stresses for the untrained cases were reliable compared to the numerical simulation results.

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.