• Title/Summary/Keyword: multi-pass sieve coreference resolution

Search Result 3, Processing Time 0.019 seconds

Korean Coreference Resolution using the Multi-pass Sieve (Multi-pass Sieve를 이용한 한국어 상호참조해결)

  • Park, Cheon-Eum;Choi, Kyoung-Ho;Lee, Changki
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.992-1005
    • /
    • 2014
  • Coreference resolution finds all expressions that refer to the same entity in a document. Coreference resolution is important for information extraction, document classification, document summary, and question answering system. In this paper, we adapt Stanford's Multi-pass sieve system, the one of the best model of rule based coreference resolution to Korean. In this paper, all noun phrases are considered to mentions. Also, unlike Stanford's Multi-pass sieve system, the dependency parse tree is used for mention extraction, a Korean acronym list is built 'dynamically'. In addition, we propose a method that calculates weights by applying transitive properties of centers of the centering theory when refer Korean pronoun. The experiments show that our system obtains MUC 59.0%, $B_3$ 59.5%, Ceafe 63.5%, and CoNLL(Mean) 60.7%.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Coreference Resolution for Korean Pronouns and Definite Noun Phrases (한국어 대명사 및 한정 명사구에 대한 상호참조해결)

  • Park, Cheon Eum;Choi, Kyoung Ho;Lee, Hong Gyu;Lee, Chang Ki
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.61-64
    • /
    • 2014
  • 본 논문은 Stanford의 다 단계 시브(Multi-pass Sieve) 상호참조해결을 기반으로, 한국어에 적용한 한국어 상호참조해결(선행 연구)을 이용하여 한정 명사구에 대한 처리와 확장된 대명사 상호참조해결 방법을 제안한다. 지시 관형사와 명사가 결합하여 형성되는 한정 명사구는 일반 멘션(mention)의 특징과 대명사 속성을 한 번에 갖게 된다. 이렇게 되면, 한정 명사구는 모든 시브(sieve)에서 상호참조를 진행할 수 있게 된다. 따라서 이런 특징으로 한정 명사구를 어떤 관점(멘션 또는 대명사)에서 상호참조해결하는 것이 좋은지 보인다. 또한 이런 한정 명사구의 대명사 속성을 이용하기 위해 문법적 의미적 규칙을 적용할 것을 제안한다. 그 결과, 본 논문의 선행 연구인 한국어 상호참조해결에 비하여 CoNLL 값이 약 0.8%만큼 향상되어 61.45%를 측정하였다.

  • PDF