• Title/Summary/Keyword: multi-nozzle

Search Result 203, Processing Time 0.023 seconds

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

FLOW AND TEMPERATURE ANALYSIS WITHIN AUTOMOBILE CABIN BY DISCHARGED HOT AIR FROM DEFROST NOZZLE

  • Park, W.G.;Park, M.S.;Jang, K.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • As an automobile tends to be high grade, the needs for more luxurious interior and comfortable HVAC system are emerged. The defrosting ability is another major factor of the performances of HVAC system. The present work is to simulate the flow and the temperature field of cabin interior during the defrost mode. The three-dimensional incompressible Navier-Stokes equations and energy equation were solved on the multi blocked grid system by the iterative time marching method and AF scheme, respectively. The present computations were validated by the comparison of the temperature field of a driven cavity and velocity field of 1/5 model scale of an automobile. Generally good agreements were obtained. By the present computation, the complicated features of flow and temperature within the automotive cabin interior could be well understood.

Robust Design for Shape Parameters of High Pressure Thermal Vapor Compressor by Numerical Analysis (전산해석을 통한 고압열증기압축기 형상변수에 관한 강건 설계)

  • Park, Il-Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.931-937
    • /
    • 2008
  • A high motive pressure thermal vapor compressor(TVC) for a commercial multi-effect desalination(MED) plant is designed to have a high entraining performance and its robustness is also considered in the respect of operating stability at the abrupt change of the operating pressures like the motive and suction steam pressure which can be easily fluctuated by the external disturbance. The TVC having a good entraining performance of more than entrainment ratio 6.0 is designed through the iterative CFD analysis for the various primary nozzle diameter, mixing tube diameter and mixing tube length. And then for a couple of TVC having a similar entrainment ratio, the changes of the entrainment ratio are checked along the motive and suction pressure change. The system stability is diagnosed through the analyzing the changing pattern of the entrainment ratio.

Numerical Analysis of Cavitation Flow Around Hydrofoils (3차원 수중익형 주위의 캐비테이션 유동 전산해석)

  • Kim, S.H.;Koo, T.K.;Park, W.G.;Kim, D.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as pump, turbine, nozzle, Infector, etc. In the present work, a solver for two-phase flows has been developed and applied to simulate the cavitating flows past hydrofoils. The governing equation is the two-phase Navier-Stokes equation, comprised of the continuity equation of liquid and vapor phase. The momentum and energy equation is in the mixture phase. The solver employs an implicit, dual time, preconditioned algorithm using finite difference scheme in curvilinear coordinates. An experimental data and other numerical data were compared with the present results to validate the present solver. It is concluded that the present numerical code has successfully accounted for two-phase Navier-Stokes model of cavitation flow.

A CFD Study on the Plume Exhausting from Missile Eject Motor (유도무기 사출모터의 배기화염에 대한 전산유체역학적 연구)

  • Ko, Sung-Ho;Kwak, Young-Kyun;Oh, Jong-Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.439-441
    • /
    • 2008
  • Three dimensional CFD study has been performed for analyzing the supersonic plume exhausting from the eject motor of a guided missile. The purpose of the study is to assess the impact of the plume to the shooter in a small bunker. The main body of the present paper is the development of a numerical method including grid generation and solver schemes.

  • PDF

Patent Review on Drive Mechanism of Multi-Axis Pintle Thrusters (다축 핀틀 추력기 구동 메카니즘의 특허 분석)

  • Kim, Seong-Su;Huh, Hwan-Il;Lee, Ho-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.262-267
    • /
    • 2012
  • For DACS system which controls pintle position to change nozzle throat area, one actuator has been used for each modulatable pintle thruster. This ten actuator system drove to complex system structure and complicated control mechanism. In order to overcome this shortcomings, international patents were reviewed, analysed and presented.

  • PDF

A Study of Quality Monitoring System for Manufacturing Process Automation during Laser Tailored Blank Welding

  • Park, Y.W.;Park, H.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Welding using lasers can be mass-produced in high speed. In the laser welding, performing real-time monitoring system of the welding quality is very important in enhancing the efficiency of welding. In this study, the plasma and molten metal which are generated during laser welding were measured using the UV sensor and IR sensors. The results of laser welding were classified into five categories such as optimal heat input, little low heat input, low heat input, partial joining due to gap mismatch, and nozzle deviation. Also, a system was formulated which uses the measured signals with a fuzzy pattern recognition method which is used to perform real-time evaluation of the welding quality and the defects which can occur in laser welding.

  • PDF

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

Design and Analysis of Aluminum Melting Machine in Fused Deposition Modeling Method (압출 적층 방식의 알루미늄 용융기의 설계 및 해석)

  • Lee, Hyun-Seok;Na, Yeong-Min;Kang, Tae-Hun;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.62-72
    • /
    • 2015
  • Interest in three-dimensional (3D) printing processes has grown significantly, and several types have been developed. These 3D printing processes are classified as Selective Laser Sintering (SLS), Stereo-Lithography Apparatus (SLA), and Fused Deposition Modeling (FDM). SLS can be applied to many materials, but because it uses a laser-based material removal process, it is expensive. SLA enables fast and precise manufacturing, but available materials are limited. FDM printing's benefits are its reasonable price and easy accessibility. However, metal printing using FDM can involve technical problems, such as suitable component supply or the thermal expansion of the heating part. Thus, FDM printing primarily uses materials with low melting points, such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) resin. In this study, an FDM process for enabling metal printing is suggested. Particularly, the nozzle and heatsink for this process are focused for stable printing. To design the nozzle and heatsink, multi-physical phenomena, including thermal expansion and heat transfer, had to be considered. Therefore, COMSOL Multiphysics, an FEM analysis program, was used to analyze the maximum temperature, thermal expansion, and principal stress. Finally, its performance was confirmed through an experiment.

Vortex pairing in an axisymmetric jet using fundamental and subharmonic forcing (기본교란 및 분수조화교란을 이용한 원형제트에서의 보텍스병합)

  • Jo, Seong-Gwon;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1350-1362
    • /
    • 1997
  • An experimental study has been performed on vortex pairing under fundamental and subharmonic forcing with controlled initial phase differences through hot-wire measurements and a multi-smoke wire flow visualization. For the range of St$_{D}$ < 0.6, vortex pairing was controlled by means of fundamental and subharmonic forcing with varying initial phase differences. Much larger mixing rate was achieved by two-frequency forcing with a proper phase difference than one frequency forcing. As St$_{D}$ decreased, vortex pairing was limited to a narrow region of the initial phase difference between two disturbances and higher amplitudes of the fundamental and its subharmonic at the nozzle exit were required for more stable pairing. As the amplitude of the subharmonic at the nozzle exit increased for fixed St$_{D}$ and fundamental amplitude, the distribution of the subharmonic mode against the variation of the initial phase difference changed from a sine function form into a cusp-like form. Thus, vortex pairing can be controlled more precisely for the former case. For St$_{D}$ > 0.6, non-pairing advection of vortices due to the improper phase difference was sometimes observed in several fundamental forcing amplitudes when only the fundamental was applied. However, when its subharmonic was added, vortex pairing readily occurred. As the initial amplitude of this subharmonic increased, the position of vortex pairing moved upstream. This was thought to be due to the fact that the variation of the initial phase difference between the fundamental and its subharmonic has less effects on vortex pairing in the region of fundamental-only vortex pairing.pairing.