• 제목/요약/키워드: multi-modal fusion

검색결과 32건 처리시간 0.025초

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.

멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합 (Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images)

  • 배혜림;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.505-518
    • /
    • 2023
  • 3차원 포인트 클라우드 의미적 분할은 각 포인트별로 해당 포인트가 속한 물체나 영역의 분류 레이블을 예측함으로써, 포인트 클라우드를 서로 다른 물체들이나 영역들로 나누는 컴퓨터 비전 작업이다. 기존의 3차원 의미적 분할 모델들은 RGB 영상들에서 추출하는 2차원 시각적 특징과 포인트 클라우드에서 추출하는 3차원 기하학적 특징의 특성을 충분히 고려한 특징 융합을 수행하지 못한다는 한계가 있다. 따라서, 본 논문에서는 2차원-3차원 멀티-모달 특징을 이용하는 새로운 3차원 의미적 분할 모델 MMCA-Net을 제안한다. 제안 모델은 중기 융합 전략과 멀티-모달 교차 주의집중 기반의 융합 연산을 적용함으로써, 이질적인 2차원 시각적 특징과 3차원 기하학적 특징을 효과적으로 융합한다. 또한 3차원 기하학적 인코더로 PTv2를 채용함으로써, 포인트들이 비-정규적으로 분포한 입력 포인트 클라우드로부터 맥락정보가 풍부한 3차원 기하학적 특징을 추출해낸다. 본 논문에서는 제안 모델의 성능을 분석하기 위해 벤치마크 데이터 집합인 ScanNetv2을 이용한 다양한 정량 및 정성 실험들을 진행하였다. 성능 척도 mIoU 측면에서 제안 모델은 3차원 기하학적 특징만을 이용하는 PTv2 모델에 비해 9.2%의 성능 향상을, 2차원-3차원 멀티-모달 특징을 사용하는 MVPNet 모델에 비해 12.12%의 성능 향상을 보였다. 이를 통해 본 논문에서 제안한 모델의 효과와 유용성을 입증하였다.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

감정 인지를 위한 음성 및 텍스트 데이터 퓨전: 다중 모달 딥 러닝 접근법 (Speech and Textual Data Fusion for Emotion Detection: A Multimodal Deep Learning Approach)

  • 에드워드 카야디;송미화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.526-527
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing multi-modal speech emotion recognition system, we can get numerous benefits. This paper explain about fusing BERT as the text recognizer and CNN as the speech recognizer to built a multi-modal SER system.

FiD를 이용한 멀티 모달 오픈 도메인 질의 응답 (Fusion-in-Decoder for Open Domain Multi-Modal Question Answering)

  • 박은환;이성민;서대룡;전동현;강인호;나승훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.95-99
    • /
    • 2022
  • 오픈 도메인 질의 응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 과업으로서 질문과 관련있는 지식을 찾는 "검색" 단계를 필요로 한다. 최근 이미지, 테이블 등의 검색을 요구하는 멀티 모달 ODQA에 대한 연구가 많이 진행되었을 뿐만 아니라 산업에서의 중요도 또한 높아지고 있다. 본 논문은 여러 종류의 멀티 모달 ODQA 중에서도 테이블 - 텍스트 기반 멀티 모달 ODQA 데이터 집합으로 Fusion-in-Decoder (FiD)를 이용한 멀티 모달 오픈 도메인 질의 응답 연구를 제안하며 베이스라인 대비 최대 EM 20.5, F1 23.2 향상을 보였다.

  • PDF

최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘 (Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System)

  • 이계환;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.76-81
    • /
    • 2009
  • 본 논문에서는 최소 분류 오차 기법 (Minimum Classification Error, MCE)에 기반한 감정 인식을 위한 알고리즘 멀티 모달(Multi-modal) 시스템을 기반으로 제안한다. 사람의 음성 신호로부터 추출한 특징벡터와 장착한 바디센서로부터 구한 피부의 전기반응도 (Galvanic Skin Response, GSR)를 기반으로 특징벡터를 구성하여 이를 Gaussian Mixture Model (GMM)으로 구성하고 이를 기반으로 구해지는 로그 기반의 우도 (Likelihood)를 사용한다. 특히, 변별적 가중치 학습을 사용하여 최적화된 가중치를 특징벡터에 인가하여 주요 감정을 식별하는 데 이용하여 성능향상을 도모한다. 실험결과 제안된 감정 인식이 기존의 방법보다 우수한 성능을 보인 것을 알 수 있었다.

A Study on Developmental Direction of Interface Design for Gesture Recognition Technology

  • Lee, Dong-Min;Lee, Jeong-Ju
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.499-505
    • /
    • 2012
  • Objective: Research on the transformation of interaction between mobile machines and users through analysis on current gesture interface technology development trend. Background: For smooth interaction between machines and users, interface technology has evolved from "command line" to "mouse", and now "touch" and "gesture recognition" have been researched and being used. In the future, the technology is destined to evolve into "multi-modal", the fusion of the visual and auditory senses and "3D multi-modal", where three dimensional virtual world and brain waves are being used. Method: Within the development of computer interface, which follows the evolution of mobile machines, actively researching gesture interface and related technologies' trend and development will be studied comprehensively. Through investigation based on gesture based information gathering techniques, they will be separated in four categories: sensor, touch, visual, and multi-modal gesture interfaces. Each category will be researched through technology trend and existing actual examples. Through this methods, the transformation of mobile machine and human interaction will be studied. Conclusion: Gesture based interface technology realizes intelligent communication skill on interaction relation ship between existing static machines and users. Thus, this technology is important element technology that will transform the interaction between a man and a machine more dynamic. Application: The result of this study may help to develop gesture interface design currently in use.

Generating Radiology Reports via Multi-feature Optimization Transformer

  • Rui Wang;Rong Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2768-2787
    • /
    • 2023
  • As an important research direction of the application of computer science in the medical field, the automatic generation technology of radiology report has attracted wide attention in the academic community. Because the proportion of normal regions in radiology images is much larger than that of abnormal regions, words describing diseases are often masked by other words, resulting in significant feature loss during the calculation process, which affects the quality of generated reports. In addition, the huge difference between visual features and semantic features causes traditional multi-modal fusion method to fail to generate long narrative structures consisting of multiple sentences, which are required for medical reports. To address these challenges, we propose a multi-feature optimization Transformer (MFOT) for generating radiology reports. In detail, a multi-dimensional mapping attention (MDMA) module is designed to encode the visual grid features from different dimensions to reduce the loss of primary features in the encoding process; a feature pre-fusion (FP) module is constructed to enhance the interaction ability between multi-modal features, so as to generate a reasonably structured radiology report; a detail enhanced attention (DEA) module is proposed to enhance the extraction and utilization of key features and reduce the loss of key features. In conclusion, we evaluate the performance of our proposed model against prevailing mainstream models by utilizing widely-recognized radiology report datasets, namely IU X-Ray and MIMIC-CXR. The experimental outcomes demonstrate that our model achieves SOTA performance on both datasets, compared with the base model, the average improvement of six key indicators is 19.9% and 18.0% respectively. These findings substantiate the efficacy of our model in the domain of automated radiology report generation.

준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘 (Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild)

  • 김대하;송병철
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.351-360
    • /
    • 2018
  • 인간 감정 인식은 컴퓨터 비전 및 인공 지능 영역에서 지속적인 관심을 받는 연구 주제이다. 본 논문에서는 wild 환경에서 이미지, 얼굴 특징점 및 음성신호로 구성된 multi-modal 신호를 기반으로 여러 신경망을 통해 인간의 감정을 분류하는 방법을 제안한다. 제안 방법은 다음과 같은 특징을 갖는다. 첫째, multi task learning과 비디오의 시공간 특성을 이용한 준 감독 학습을 사용함으로써 영상 기반 네트워크의 학습 성능을 크게 향상시켰다. 둘째, 얼굴의 1 차원 랜드 마크 정보를 2 차원 영상으로 변환하는 모델을 새로 제안하였고, 이를 바탕으로 한 CNN-LSTM 네트워크를 제안하여 감정 인식을 향상시켰다. 셋째, 특정 감정에 오디오 신호가 매우 효과적이라는 관측을 기반으로 특정 감정에 robust한 오디오 심층 학습 메커니즘을 제안한다. 마지막으로 소위 적응적 감정 융합 (emotion adaptive fusion)을 적용하여 여러 네트워크의 시너지 효과를 극대화한다. 제안 네트워크는 기존의 지도 학습과 반 지도학습 네트워크를 적절히 융합하여 감정 분류 성능을 향상시켰다. EmotiW2017 대회에서 주어진 테스트 셋에 대한 5번째 시도에서, 제안 방법은 57.12 %의 분류 정확도를 달성하였다.