• Title/Summary/Keyword: multi-mobile robot

Search Result 183, Processing Time 0.04 seconds

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Performance Evaluation of Multi-Hop Communication Based on a Mobile Multi-Robot System in a Subterranean Laneway

  • Liu, Qing-Ling;Oh, Duk-Hwan
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.471-482
    • /
    • 2012
  • For disaster exploration and surveillance application, this paper aims to present a novel application of a multi-robot agent based on WSN and to evaluate a multi-hop communication caused by the robotics correspondingly, which are used in the uncertain and unknown subterranean tunnel. A Primary-Scout Multi-Robot System (PS-MRS) was proposed. A chain topology in a subterranean environment was implemented using a trimmed ZigBee2006 protocol stack to build the multi-hop communication network. The ZigBee IC-CC2530 modular circuit was adapted by mounting it on the PS-MRS. A physical experiment based on the strategy of PS-MRS was used in this paper to evaluate the efficiency of multi-hop communication and to realize the delivery of data packets in an unknown and uncertain underground laboratory environment.

Study for Control Algorithm of Robust Multi-Robot in Dynamic Environment (동적인 환경에서 강인한 멀티로봇 제어 알고리즘 연구)

  • 홍성우;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.249-254
    • /
    • 2001
  • Abstract In this paper, we propose a method of cooperative control based on artifical intelligent system in distributed autonomous robotic system. In general, multi-agent behavior algorithm is simple and effective for small number of robots. And multi-robot behavior control is a simple reactive navigation strategy by combining repulsion from obstacles with attraction to a goal. However when the number of robot goes on increasing, this becomes difficult to be realized because multi-robot behavior algorithm provide on multiple constraints and goals in mobile robot navigation problems. As the solution of above problem, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for obstacle avoidance. Here, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for their direction to avoid obstacle. Our focus is on system of cooperative autonomous robots in environment with obstacle. For simulation, we divide experiment into two method. One method is motor schema-based formation control in previous and the other method is proposed by this paper. Simulation results are given in an obstacle environment and in an dynamic environment.

  • PDF

Teleoperation System of a Mobile Robot over the Internet (인터넷을 이용한 이동로봇의 원격 운용 시스템)

  • Park, Taehyun;Gang, Geun-Taek;Lee, Wonchang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents a teleoperation system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision over the Internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a web browser and a computer connected to the communication network and so they can command the robot in a remote location through the home page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the client part for the user interface and robot control as well as the server part for communication between users and robot. The server and client systems are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore. this system offers an image compression method using JPEG concept which reduces large time delay that occurs in network during image transmission.

Reinforcement learning for multi mobile robot control in the dynamic environments (동적 환경에서 강화학습을 이용한 다중이동로봇의 제어)

  • 김도윤;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.944-947
    • /
    • 1996
  • Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.

  • PDF

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

Getting On and Off an Elevator Safely for a Mobile Robot Using RGB-D Sensors (RGB-D 센서를 이용한 이동로봇의 안전한 엘리베이터 승하차)

  • Kim, Jihwan;Jung, Minkuk;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.55-61
    • /
    • 2020
  • Getting on and off an elevator is one of the most important parts for multi-floor navigation of a mobile robot. In this study, we proposed the method for the pose recognition of elevator doors, safe path planning, and motion estimation of a robot using RGB-D sensors in order to safely get on and off the elevator. The accurate pose of the elevator doors is recognized using a particle filter algorithm. After the elevator door is open, the robot builds an occupancy grid map including the internal environments of the elevator to generate a safe path. The safe path prevents collision with obstacles in the elevator. While the robot gets on and off the elevator, the robot uses the optical flow algorithm of the floor image to detect the state that the robot cannot move due to an elevator door sill. The experimental results in various experiments show that the proposed method enables the robot to get on and off the elevator safely.

EKF based Mobile Robot Indoor Localization using Pattern Matching (패턴 매칭을 이용한 EKF 기반 이동 로봇 실내 위치 추정)

  • Kim, Seok-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.

Cooperative mobile robots using fuzzy algorithm

  • Ji, Seunghwan;Kim, Hyuntae;Park, Minkee;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.468-472
    • /
    • 1992
  • In recent years, lots of researches on autonomous mobile robot have been accomplished. However they focused on environment recognition and its processing to make a decision on the motion, And cooperative multi-robot, which must be able to avoid crash and to make mutual communication, has not been studied much. This paper deals with cooperative motion of two robots, 'Meari 1" and "Meari 2 " made in our laboratory, based on communication between the two. Because there is an interference on communication occurring in cooperative motion of multi-robot, many restrictive conditions are required. Therefore, we have designed these robot system so that communication between them is available and mutual interference is precluded, and we used fuzzy interference to overcome unstability of sensor data.of sensor data.

  • PDF