• 제목/요약/키워드: multi-material arbitrary Lagrangian Eulerian method

검색결과 6건 처리시간 0.023초

Numerical evaluation of hypothetical core disruptive accident in full-scale model of sodium-cooled fast reactor

  • Guo, Zhihong;Chen, Xiaodong;Hu, Guoqing
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2120-2134
    • /
    • 2022
  • A hypothetical core destructive accident (HCDA) has received widespread attention as one of the most serious accidents in sodium-cooled fast reactors. This study combined recent advantages in numerical methods to realize realistic modeling of the complex fluid-structure interactions during HCDAs in a full-scale sodium-cooled fast reactor. The multi-material arbitrary Lagrangian-Eulerian method is used to describe the fluid-structure interactions inside the container. Both the structural deformations and plug rises occurring during HCDAs are evaluated. Two levels of expansion energy are considered with two different reactor models. The simulation results show that the container remains intact during an accident with small deformations. The plug on the top of the container rises to an acceptable level after the sealing between the it and its support is destroyed. The methodology established in this study provides a reliable approach for evaluating the safety feature of a container design.

ALE 묘사에 왜한 3차원 후방압출 해석 (FE Analysis of Three Dimensional Backward Extrusion Using the ALE description)

  • 정상원;정용호;김규하;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.628-631
    • /
    • 2002
  • This paper has executed FE-analysis to review the feasibility for developing the process, which produces the narrow-cubic type cans, using the Backward Impact Extrusion process instead of using current process, multi-stage deep drawing. Proposes an analysis method by applying ALE(Arbitrary Lagrangian-Eulerian) description to non-axisymmetric extrusion. which is appreciated as one of good solution to mesh distortion in case of the large deformation plasticity process that has mass flux, and considers the factors which affects forming-loads related to punch velocity and fulid status of material.

  • PDF

LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목 (Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling)

  • 최병희;선우춘;정용복
    • 화약ㆍ발파
    • /
    • 제38권3호
    • /
    • pp.15-29
    • /
    • 2020
  • 본 논문에서는 Hoek-Brown (HB) 파괴기준을 Holmquist-Johnson-Cook (HJC) 콘크리트 재료모델에 접목시킴으로써 LS-DYNA 상에서 암반발파를 모델링할 때 현장암반의 고유한 특성이 잘 반영될 수 있도록 도모하였다. 이것은 많은 지질학적 불연속면을 포함하고 있는 현장암반이 지니고 있는 독특한 특징을 강조하기 위함이다. 두 모델의 접목은 HB 파괴기준으로 HJC 재료모델의 정적 강도 부분을 교체함으로써 이루어지며, 교체과정은 통계학적 곡선적합 기법에 의해 수행된다. 본 논문에서는 접목의 과정이 상세하게 소개되며, 획득된 HJC 재료모델의 사용에 대한 실례도 제시된다. 제시된 수치계산은 현장의 석회암 암반의 단일공 발파에 대한 평면변형률 모델링으로서 LS-DYNA가 제공하는 유체-구조물 상호작용(FSI) 기법과 다중재료 라그랑주-오일러(MMALE) 정식화 기법을 조합하여 수행된다.

자유낙하식 구명정의 가속도 응답 추정을 위한 LS-DYNA 에서의 다중물질 ALE 와 단일물질 ALE의 비교 (Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat)

  • 배동명;자키
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.552-559
    • /
    • 2011
  • An interest in Arbitrary Lagrangian Eulerian (ALE) finite element methods has been increased due to more accurate responses in Fluid-Structure Interaction(FSI) problems. The multi-material ALE approach was applied to the prediction of the acceleration response of free-fall lifeboat, and its responses were compared to those of the single-material ALE one. It could be found that even though there was no big difference in the simulation responses of two methods, the single-material and multi-material ALE ones, the latter multi-material ALE method showed a little bit more close response to those of experimental results compared to the former single-material ALE one, especially in the x- and z-direction acceleration responses. Through this study, it could be found that several parameters in the ALE algorithms have to be examined more carefully for a good structural safety assessment of FSI problems.

A new ALE formulation for sloshing analysis

  • Aquelet, N.;Souli, M.;Gabrys, J.;Olovson, L.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.423-440
    • /
    • 2003
  • Arbitrary Lagrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. "Fuel slosh" can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a "sloshing resonance" is generated. These sloshing events can in turn affect the overall performance of the parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh has been developed to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level. Following the explanation, the analysis capabilities are validated against theoretical using potential flow for calculating fuel slosh frequency.

Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters

  • Lou, Yun-Feng;Luo, Chuan;Jin, Xian-Long
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.393-410
    • /
    • 2015
  • Two dimensional numerical models and physical models have been developed to study the highly nonlinear interactions between waves and breakwaters, but several of these models consider the effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical breakwater model. The wave impact is validated computationally using a breakwater - flume coupling model that replicates the physical model. The computational results, including those for the wave pressure and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is used to discuss the effects of the structural dynamic response and different design parameters of the breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater model is used to numerically study the large-scale wave impact problem and the horizontal distribution of the wave pressures on the seawalls.