• Title/Summary/Keyword: multi-linear model

Search Result 736, Processing Time 0.034 seconds

Helical gear multi-contact tooth mesh load analysis with flexible bearings and shafts

  • Li, Chengwu;He, Yulin;Ning, Xianxiong
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.839-856
    • /
    • 2015
  • A multi-contact tooth meshing model for helical gear pairs considering bearing and shaft deformations is proposed. First, to easily incorporate into the system model, the complicated Harris' bearing force-displacement relationship is simplified applying a linear least square curve fit. Then, effects of shaft and bearing flexibilities on the helical gear meshing behavior are implemented through transformation matrices which contain the helical gear orientation and spatial displacement under loads. Finally, true contact lines between conjugated teeth are approximated applying a modified meshing equation that includes the influence of tooth flank displacement on the tooth contact induced by shaft and bearing displacements. Based on the model, the bearing's force-displacement relation is examined, and the effects of shaft deformation and external load on the multi-contact tooth mesh load distribution are also analyzed. The advantage of this work is, unlike previous works to search true contact lines through time-consuming iterative strategy, to determine true contact lines between conjugated teeth directly with presentation of deformations of bearings and shafts.

Multi-step Predictive Control of LMTT using DR-FNN

  • Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-395
    • /
    • 2003
  • In the maritime container terminal, LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

Dynamic Analysis of a Linear Feeder for Uniform Transformation of Grains (곡물의 균일한 이송을 위한 리니어 피더의 동특성 해석)

  • Lee, Kyu-Ho;Kim, Syung-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • The purpose of this study is to improve the performance of a linear feeder that can transport grains uniformly. In order to analyze the dynamic behaviors of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the feeder motion in the space is visualized by using graphic computer software. In addition, a dynamic model of the feeder is established for a multi-body dynamics simulation. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. From the experimental and the computational approaches, an optimal dynamic motion is obtained for uniform transportation of grains. Furthermore, we also consider the determination of design parameters for optimal dynamic motion such as centroid, stiffness, and damping coefficient of the feeder system.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

A Study on Multi-Phase Flashover in 765kV Transmission Line using EMTP (EMTP를 이용한 765kV 송전선로 다상 섬락에 관한 연구)

  • Ka, B.H.;Min, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1586-1588
    • /
    • 1998
  • To use the EMTP, in this paper, a arcing horn is simulated by non-linear resistor and inductor element using TACS, a tower by distributed parameter model, and lines as K. C. Lee model. Changing lightning current characteristics, lightning position, and tower footing resistor value, we analysis multi-phase flashover characteristics in 765 kV transmission line.

  • PDF

Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy (퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링)

  • 이재하;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.75-80
    • /
    • 1999
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcome limitation of accuracy in the linear regression model or the engineering judgment model. And this model is compared with the engineering judgment model. It is not necessary complex process such like multi-regression analysis of the engineering judgment model. A fuzzy model does not need to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Like a regression model, this model can be applied to any machine, but it delivers greater accuracy and robustness.

  • PDF

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

A Study on the Experimental Compensation of Thermal Deformation in Machine Tools (공작기계 열변형의 실험적 보정에 관한 연구)

  • 윤인준;류한선;고태조;김희술
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.16-23
    • /
    • 2004
  • Thermally induced errors of machine tools have been recognized as one of the most important issues in precision machining. This is probably the most formidable obstacle to obtain high level of machining accuracy. To this regard, the experimental compensation methodologies such as software-based method or origin shift of machine tool axes have been suggested. In this research, to cope with thermal deformation, a model based correction was carried out with the function of an external machine coordinate shift. Models with multi-linear regression or neural network were investigated to selected a good one for thermal compensation. Consequently, multi-linear regression model combined with origin shift was verified good enough form the machining of dot matrices of plate with ball end milling.

Active Appearance Model using Multi-linear Analysis based on Tensor (Tensor 기반의 Multi-linear Analysis 를 이용한 Active Appearance Model)

  • Jo, Gyeong-Sic;Kim, Yong-Guk
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.197-202
    • /
    • 2009
  • Active Appearance Models(AAMs)은 얼굴인식, 얼굴추적, 표정인식 뿐만 아니라 눈동자 추적과 같은 분야에도 적용되어 좋은 성능을 보여 주었다. 보통 AAM 을 생성하기 위해서는 얼굴 영상과 얼굴의 특징을 나타내는 점으로 구성된 매쉬로 이루어 지는 트레이닝 셋이 필요하다. AAM fitting algorithm 은 학습한 얼굴과 유사한 얼굴을 Fitting 할 때에는 뛰어난 성능을 보이지만 조명에 의한 그림자 또는 액세서리에 의한 얼굴의 피부 가림과 같이 전체 얼굴이 잘 나타나지 않는 불완전한 영상의 Fitting 은 입력영상과 템플릿 영상간의 오차가 커지기 때문에 실패할 가능성이 매우 높다. 본 논문에서 우리는 AAMs 에서 사용되는 PCA를 Higher-order Singular Value Decomposition(HOSVD)로 대체하여 이 문제를 보완하는 강화된 AAM 을 제안한다. 제안된 AAM 에는 기존에 사용하던 고유벡터와 함께 HOSVD 를 통해 획득할 수 있는 Eigen-Modes 를 추가하여 사용한다. 또한 우리는 Yale Face Database를 이용한 평가를 통해 제안된 AAM 이 기존 AAM 보다 불완전한 영상에 효과적으로 대응하는 것을 보여준다.

  • PDF

Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions (쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법)

  • Won, Jong-Seo;Koo, Jae-Oh
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.