• 제목/요약/키워드: multi-layered hybrid laminate

검색결과 3건 처리시간 0.018초

Al Shee/CFRP 다적층 하이브리드 복합재료의 굴곡강도에 미치는 카본섬유 체적률 및 배열방향 영향 (The Influence of Volume Fraction and Fiber Orientation of CERP Layer on Flexural properties of A17075/CFRP Multi-Layered Hybrid Laminate Material)

  • 유재환
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.31-35
    • /
    • 2004
  • The A17075/CFRP multi-layered hybrid laminate material consists of the alternating A17075-T6 sheets and carbon/epoxy prepregs of M40 fade. The influence of volume fraction and fiber orientation of A17075/CFRP layer on flexural properties of A17075/CFRP laminate alternating A17075-T6 and carbon/epoxy prepreg was investigated. The results obtained from the experimental analysis are as follows: 1. In the $0^{\circ}$ fiber orientation, the mont of increase of the flexural rigidity was $20.5\%$ at the $26.5\%$ volume fraction and $38.0\%\;at\;the\;35.7\%$ volume fraction compared with the flexural rigidity level(20.0GPa) of the $10\%$ volume fraction of CFRP. 2. In the $\pm45^{\circ}$ fiber orientation the amount of decrease of the flexural rigidity was $23.5\%\;at\;the\;20.0\%$ volume fraction and $31.5\%\;at\;the\;33.3\%$ volume fraction compared with the flexural rigidity level of the $10\%$ volume fraction of CFRP. 3. In the $0^{\circ}$ fiber orientation, the flexural strength was 481.5MPa at the $10\%$ volume fraction of CFRP and 583.8MPa at the $26.5\%$ volume fraction and 653.7MPa at the $35.7\%$ volume faction. 4. In the $\pm45^{\circ}$ fiber orientation, the flexural strength was 354.0MPa at the $20.0\%$ volume fraction of CFRP and 340.5MPa at the $33.3\%$ volume fraction.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

FEM에 의한 CRALL재의 노치강도 해석(I) (Notched Strength Analysis of CRALL Materials by FEM (I))

  • 윤한기
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.41-50
    • /
    • 1999
  • As for the properties on both the aluminum and the CFRP which are used to make A17075/CFRP multi-layered hybrid composites, CRALL(carbon reinforced aluminum laminate). In the CRALL specimen for rule of mixture, we were analyzed notched strength by finite element method. The results obtained from FEM analysis are as follows; In the unnotch CRALL specimen, the stresses CFRP, epoxy, Al 7075 obtained by finite element method strength solution for A/C0001, when strain is 0.28%, are 1400MPa, 38MPa, 411MPa. respectively and for A/C9991, when strain 0.48%, are 392MPa, 26MPa and 321Mpa, respectively. the solpe of the stress-strain curve by FEM increases in keeping with the hole size and the yield strain decrease to 36% and 55% for A/C9993 and A/C9991 respectively.

  • PDF