• Title/Summary/Keyword: multi-joint robot arm

Search Result 10, Processing Time 0.03 seconds

Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing- (수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

Optimizing Movement of A Multi-Joint Robot Arm with Existence of Obstacles Using Multi-Purpose Genetic Algorithm

  • Toyoda, Yoshiaki;Yano, Fumihiko
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • To optimize movement of a multi-joint robot arm is known to be a difficult problem, because it is a kind of redundant system. Although the end-effector is set its position by each angle of the joints, the angle of each joint cannot be uniquely determined by the position of the end-effector. There exist the infinite number of different sets of joint angles which represent the same position of the end-effector. This paper describes how to manage the angle of each joint to move its end-effector preferably on an X-Y plane with obstacles in the end-effector’s reachable area, and how to optimize the movement of a multi-joint robot arm, evading obstacles. The definition of “preferable” movement depends upon a purpose of robot operation. First, we divide viewpoints of preference into two, 1) the standpoint of the end-effector, and 2) the standpoint of joints. Then, we define multiple objective functions, and formulate it into a multi-objective programming problem. Finally, we solve it using multi-purpose genetic algorithm, and obtain reasonable results. The method described here is possible to add appropriate objective function if necessary for the purpose.

6 DOF Industrial Robot Based on Multi-DOF Counterbalance Mechanism (다자유도 수동식 중력보상장치 기반의 6자유도 산업용 로봇)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Static balance of an articulated robot arm at various configurations requires a torque compensating for the gravitational torque of each joint due to the robot mass. Such compensation torque can be provided by a spring-based counterbalance mechanism. However, simple installation of a counterbalance mechanism at each pitch joint does not work because the gravitational torque at each joint is dependent on other joints. In this paper, a 6 DOF industrial robot arm based on the parallelogram for multi-DOF counterbalancing is proposed to cope with this problem. Two passive counterbalance mechanisms are applied to pitch joints, which reduces the required torque at each joint by compensating the gravitational torque. The performance of this mechanism is evaluated experimentally.

Evaluation of dynamical performance of 3 dimensional multi-arm robot (3차원 다중 로봇의 동적 성능 평가)

  • 김기갑;김충영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.756-759
    • /
    • 1997
  • Multi-arm cooperation robot system is required for more specific and dextrous jobs such as transferring very large or heavy objects, or grasping work piece while processing on it. There is little research on 3-dimensional multi-arm robot. Here we propose two performance indices presenting isotropy of end-effector's acceleration and velocity capabilities with constraints of joint torques, that is Isotropic Acceleration Radius [IAR] and Isotropic Velocity Radius [IVRI. Also the procedure to find 3-dimensional IAR, IVR is proposed, where available acceleration set concept is used. The case of 3-dimensional two 3 joint robot system was simulated and the distributions of IAR, IVR was studied.

  • PDF

A Study on the Multi-Joint Rehabilitation System of an Industrial Robot

  • Lee, Yong-Seok;Jang, Jae-Ho;Sim, Hyung-Joon;Han, Chang-Soo;Han, Jung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.92-95
    • /
    • 2004
  • This study proposes an industrial rehabilitation robot system which can exercise two joints in 3 dimensional spaces. The robot kinematics analysis and the results of studies on each joint for the rehabilitation robot could verify possibility of rehabilitation motion to exercise a joint. The force and torques sensor not only measures a rehabilitation performance of subjects between the abnormal limb and the manipulator, but also carries out an important function of safety device to prevent accidents. Also, limit sensors and emergency stop switch are used for high safety in this system. In this real test, the possibility of rehabilitation robot system is evaluated by C&R ARM I which is similar to upper-limb.

  • PDF

Approximated Generalized Torques by the Hydrodynamic Forces Acting on Legs of an Underwater Walking Robot

  • Jun, Bong-Huan;Shim, Hyung-Won;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.222-229
    • /
    • 2011
  • In this paper, we present the concept and main mission of the Crabster, an underwater walking robot. The main focus is on the modeling of drag and lift forces on the legs of the robot, which comprise the main difference in dynamic characteristics between on-land and underwater robots. Drag and lift forces acting on the underwater link are described as a function of the relative velocity of the link with respect to the fluid using the strip theory. Using the translational velocity of the link as the rotational velocity of the joint, we describe the drag force as a function of joint variables. Generalized drag torque is successfully derived from the drag force as a function of generalized variables and its first derivative, even though the arm has a roll joint and twist angles between the joints. To verify the proposed model, we conducted drag torque simulations using a simple Selective Compliant Articulated Robot Arm.

Independent point Adaptive Fuzzy Sliding Mode Control of Robot Manipulator (로봇 매니퓰레이터의 독립관절 적응퍼지슬라이딩모드 제어)

  • Kim, Young-Tae;Lee, Dong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-132
    • /
    • 2002
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper an independent joint adaptive fuzzy sliding mode scheme is developed leer control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for independent joint control of a 3-axis PUMA arm will also be included.

Design of a Robotic Device for Effective Shoulder Rehabilitation (효과적인 견관절 재활을 위한 로봇의 설계)

  • Lee, Kyoung-Soub;Park, Jeong-Ho;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.505-510
    • /
    • 2017
  • This paper presents a low-cost robotic device for shoulder rehabilitation, which is capable of treating various shoulder disabilities. A 3-DOF passive shoulder joint tracking module was designed to allow for translational motion of the shoulder joint center during arm swing, which is essential for natural shoulder movement. The weight of the user's arm and the device were compensated for by springs, to enable gravity-free shoulder motion. In order to reduce the device's cost, only one actuator was used, which can be aligned with the user's shoulder joint in various orientations. The device is capable of implementing five representative shoulder motions, including flexion/extension, abduction/adduction, horizontal abd/adduction, internal/external rotation, and oblique raise. The proposed low-cost shoulder rehabilitation robot is expected to provide effective rehabilitation for patients with various shoulder impairments.

Robot Arm Design with Nonlinearity and Workspace Consideration (비선형 효과 및 작업 공간을 고려한 로보트 팔의 설계)

  • Lee, Sang-Jo;Yun, Yeong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.20-30
    • /
    • 1988
  • Using the design parameters of multi-joint manipulator, worspace of the manipulator were evaluated analytically, and the relation between such design parameters and nonlinearity of the manipulator were presented dynamically. The ratio of the volumes of a manipulator's workspace to the cube of its total link length presents a kinematic performance index [NVI] for the manipullator. It is possible to geometrically represent the manipulator dynamics with the generalized inertia ellipsoid (GIE). The relation between the GIE configuration and the characteristics of manipulator dynamics was analysed in terms of inertia and nonlinear forces (Coliolis and centrifugal forces). The nonlinearity caused by the change of the GIE configuration were affected by the difference between the major and minor axes length of the GIE. The results of this investigationare applied to the optimal design of the manipulator.

  • PDF

Telemedicine robot system for visual inspection and auscultation using WebRTC (WebRTC를 이용한 육안 검사 및 청진용 원격진료 로봇 시스템)

  • Jae-Sam Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.139-145
    • /
    • 2023
  • When a doctor examines a patient in a hospital, the doctor directly checks the patient's condition and conducts a face-to-face diagnosis through dialogue with the patient. However, it is often difficult for doctors to directly treat patients. Recently, several types of telemedicine systems have been developed. However, the systems have lack of capabilities to observe heart disease, neck condition, skin condition, inside ear condition, etc. To solve this problem, in this paper, an interactive telemedicine robot system with autonomous driving in a room capable of visual examination and auscultation of patients is developed. The developed robot can be controlled remotely through the WebRTC platform to move toward the patient and check a patient's condition under the doctor's observation using the multi-joint robot arm. The video information, audio information, patient's heart sound, and other data obtained remotely from patients can be transmitted to a doctor through the web RTC platform. The developed system can be applied to the various places where doctors are not possible to attend.