• Title/Summary/Keyword: multi-hop routing

Search Result 308, Processing Time 0.03 seconds

WDMA protocol with collision avidance for high speed optical networks (고속 광통신망에서 충돌 회피를 위한 파장 분할 다중 액세스 프로토콜)

  • 이호숙;최형원;박성우;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.664-674
    • /
    • 1996
  • In high speed multi-wavelength networks, retransmission overhead due to desination conflict or control packet collision is one factor of performance degration because signal prpagation delay is much larger than the transmission time of data packet. In this paper, an efficient WDMA protocol with a collision avoidance mechanism is proposed for high speed WDM single-hop network with a passive star topology. In proposed protocol, each node has cource queues and routing table to store souting informatio. This architecture makes is possible to avoid any kind of collision when a node reserves the channel to transmit a data packet. High system thoughput and channel utilization can be achieved by proposed protocol since there are no discarded packets caused by any collision at transmission time. The performance of proposed protocol is evaluated in term of throughput and delay with variations in offered load. Simulation results show that the proposed protocol has superior performance to convertional protocols under nonuniform traffic as well as uniform traffic.

  • PDF

Publish/Subscrib Service based Selective Sensor Data Monitoring System using Mesh Network (메쉬 네트워크에서 가입/게시(subscribe/publish) 서비스기반 선택적 센서정보 모니터링 시스템)

  • Kim, Yong-Hyuck;Kim, Young-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.493-502
    • /
    • 2010
  • In this paper we propose a scalable sensor network system that makes mesh network among the sink nodes to solve the scalability problem of existing sensor network which is caused by multi-hop networking between the sensor nodes. In the proposed system, the sink nodes have the wireless networking ability to communicate with another sink nodes in mesh fashion, and with the monitoring nodes which is located in the local area or internet area. Especially, the system includes L4(Application Layer) routing mechanism that provides subscribe/publish service to serve selective transmission of sensor data to the specific monitoring nodes. The collected sensor data is transmitted to the monitoring nodes when the sensor data is matched with the monitoring node's interesting value.

A Back-Pressure Algorithm for Lifetime Extension of the Wireless Sensor Networks with Multi-Level Energy Thresholds (센서네트워크 수명 연장을 위한 에너지 임계값 기반 다단계 Back-Pressure 알고리즘)

  • Jeong, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1083-1096
    • /
    • 2008
  • This paper proposes an energy-aware path management scheme, so-called the TBP(Threshold based Back-Pressure) algorithm, which is designed for lifetime extension of the energy-constrained wireless sensor networks. With the goal of fair energy consumptions, we extensively utilize the available paths between the source and the sink nodes. The traffic distribution feature of the TBP algorithm operates in two scales; the local and the whole routing area. The threshold and the back-pressure signal are introduced for implementing those operations. It is noticeable that the TBP algorithm maintains the scalability by defining both the threshold and the back-pressure signal to have their meanings locally confined to one hop only. Throughout several experiments, we observe that the TBP algorithm enhances the network-wide energy distribution. which implies the extension of the network lifetime. Additionally, both the delay and the throughput outcomes show remarkable improvements. This shows that the energy-aware path control scheme holds the effects of the congestion control.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

TTCG : Three-Tier Context Gathering Technique for Mobile Devices (이동 단말기를 위한 Three-Tier 상황정보 수집 기법)

  • Sho, Su-Hwan;Kim, Seung-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.64-72
    • /
    • 2009
  • Previous research on sensor networks mainly focused on efficient transmission of data from sensors to fixed sink nodes. Recently there has been active research on mobile sink nodes, but the re-search of an environment where both fixed sink nodes and mobile sinks are present at the same time is rather scarce. This paper proposes a technique for context gathering by mobile devices with the sink functionality added through fixed sinks under a previously built, cluster based multi hop sensor network environment. To this end, clustering of mobile devices were done based on the fixed sinks of a previously built sensor network, and by using appropriate fixed sinks, context gathering was made possible. By mathematical comparison with TTDD routing protocol, which was proposed for mobile sinks, it was conformed that performance increases in energy with the number of mobile sinks, and with the number of movements by mobile devices.

A Study on Establishing Resident's Behavioral Model in Daily Living based on a Wireless Sensor Network (무선센서 네트워크를 통한 실내 거주자의 일상생활 행동 모형 정립 연구)

  • Cho, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • While the issue of caring for the elderly that faces the modern society has reached a serious level, it is expected that it will be particularly true in the Republic of Korea where an aged, not an aging, society is impending. In this paper I did research on establishing behavioral model of residents who dwell in home or welfare facilities. I suggested a behavioral model in daily living, $W_{ip}(n)$, based on event triggering. A multi-hop routing-based wireless luminance/temperature sensor network was built based on the proposed resident's behavioral model. 1 did experiments on behavioral activities of residents on the wireless sensor network system. According to experimental results. I could classify whether the daily activity of a resident someday is regular or not. These experimental results show that the proposed behavioral model is highly applicable in caring for residents in home or welfare facilities effectively in the future.

A Multistage Authentication Strategy for Reliable N-to-N Communication in CGSR based Mobile Ad Hoc Networks (CGSR 기반의 이동 애드 흑 네트워크에서 신뢰성 있는 통신을 위한 노드간 인증 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.659-667
    • /
    • 2005
  • A Mobile Ad Hoc Network(MANET) is a multi hop wireless network with no prepared base stations or centralized administrations, where flocks of peer systems gather and compose a network. Each node operates as a normal end system in public networks. In addition to it, a MANET node is required to work as a router to forward traffic from a source or intermediate node to others. Each node operates as a normal end system in public networks, and further a MANET node work as a router to forward traffic from a source or intermediate node to the next node via routing path. Applications of MANET are extensively wide, such as battle field or any unwired place; however, these are exposed to critical problems related to network management, node's capability, and security because of frequent and dynamic changes in network topology, absence of centralized controls, restricted usage on network resources, and vulnerability oi mobile nodes which results from the special MANET's character, shared wireless media. These problems induce MANET to be weak from security attacks from eavesdropping to DoS. To guarantee secure authentication is the main part of security service In MANET because networks without secure authentication are exposed to exterior attacks. In this paper, a multistage authentication strategy based on CGSR is proposed to guarantee that only genuine and veritable nodes participate in communications. The proposed authentication model is composed of key manager, cluster head and common nodes. The cluster head is elected from secure nodes, and key manager is elected from cluster heads. The cluster head will verify other common nodes within its cluster range in MANET. Especially, ID of each node is used on communication, which allows digital signature and blocks non repudiation. For performance evaluation, attacks against node authentication are analyzed. Based on security parameters, strategies to resolve these attacks are drawn up.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.