• Title/Summary/Keyword: multi-hop relay

Search Result 167, Processing Time 0.025 seconds

A Study on Environment Management System in Tunnel using Wireless Sensor Networks (무선 센서 네트워크를 이용한 터널 내 환경 관리 시스템에 관한 연구)

  • Joo, Yang-Ick;Kim, Jae-Wan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1196-1203
    • /
    • 2013
  • In general, the cost of transceiver for wireless network configuration is more expensive than that for wired network. However, in case of environmental management system in a tunnel, the cost can be minimized by adopting low rate tranceiver because the amount of the exchanged data for tunnel monitoring is very small. When the obtained data from sensor node is sent directly to the corresponding command node, there is no need to consider routing problem of the data transfer. However in this case, sensor nodes are required to be implemented with high power transmitter and experience high energy consumption. To tackle this problem, relay nodes can be used to transfer the data of tunnel monitoring, and suitable routing protocols for selecting optimum path are needed. Therefore, in this paper, we propose a routing algorithm and a self-configuration protocol for environment management system in tunnel.

A Channel Estimation Technique Based on Pilot Tones for OFDM Systems with a Symbol Timing Offset (시간 동기 옵셋을 갖는 OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Kim, Jae-Kwon;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.992-1003
    • /
    • 2007
  • In this paper, a channel estimation technique based on pilot tones, which does not degrade channel estimation performance even with the existence of symbol timing offset (STO) in OFDM systems, is proposed. The proposed technique performs channel estimation by interpolating channels with respect to amplitude and phase with a minimum computational complexity, differently from the conventional interpolation techniques. The proposed technique requires neither the estimation of fine STO in advance nor trigonometric operation for phase interpolation, signifying a significant reduction in computational complexity. Since the performance of the proposed technique does not depend on the STO present in OFDM systems. It can be directly applied to the following areas in OFDM-based communication system: elimination of fine STO estimation step in the synchronization procedure, elimination of STO estimation step in multiuser uplink, and channel estimation in multi-hop relay system. It is verified by computer simulation that the proposed technique can improve the performance of channel estimation significantly in the presence of STOs, compared with previous channel estimation techniques based on pilot tones.

Energy Efficient Congestion Control Scheme in Ad-hoc Networks (Ad-hoc 통신망의 에너지 효율적인 혼잡 제어 기법)

  • Cho, Nam-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.5
    • /
    • pp.369-379
    • /
    • 2006
  • In recent years, there have been many researches about Ad-hoc Networks which is available to communicate freely between mobile devices by using multi-hop without any support of relay base or access point. TCP that used the most widely transport protocol in the Internet repeats packet loss and retransmission because it increases congestion window size by using reactive congestion control until packet loss occurs. As a result of this, energy of mobile device is wasted unnecessarily. In this paper, we propose TCP-New Veno in order to improve the energy efficiency of mobile device. According to the state of network, the scheme adjusts appropriate size of congestion window. Therefore, the energy efficiency of mobile device and utilization of bandwidth are improved by the scheme. From the simulation by using ns-2, we could see more improved energy efficiency with TCP-New Veno than those with TCP in Ad-hoc Networks.

Performance Analysis in Wireless Home Network using Bluetooth with SAW-ARQ (SAW-ARQ를 활용하여 블루투스 하에서의 무선 홈 네트워크의 성능 분석)

  • Hong, Sung-Hwa;Kang, Bong-Jik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1608-1615
    • /
    • 2010
  • In this paper, we proposed the method called "DoublePico"(Double Piconet) forovercoming low data transmission rate in a scatternet. This needs a new Ad-hoc network topology to transmit with high rate. Every node performs the function of the relay station. DoublePico has two bluetooth devices that should form two different poconets; every node can make a link between two different piconets. Two different piconets are linked in one node by the link with two bluetooth divices thereby forming the Ad-Hoc network. In this paper, we shows the method of DoublePico which supports about 457kbps of the maximum data transmission rate. This method supports a higher data transmission rate than the traditional bluetooth's Ad-Hoc topology by using analysis and comparison of existing algorithm of bluetooth specification and simulation results. Specifically, this paper focuses on the impact of intererence on the PER (Packet Error Rate), throughput performance, and the throughput improvement with SAW(Stop and Wait)-ARQ scheme in DoublePico.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.