• 제목/요약/키워드: multi-epitope

검색결과 4건 처리시간 0.018초

Multi-Immunogenic Outer Membrane Vesicles Derived from a MsbB-Deficient Salmonella enterica Serovar Typhimurium Mutant

  • Lee, Sang-Rae;Kim, Sang-Hyun;Jeong, Kang-Jin;Kim, Keun-Su;Kim, Young-Hyun;Kim, Sung-Jin;Kim, E-Kyune;Kim, Jung-Woo;Chang, Kyu-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1271-1279
    • /
    • 2009
  • To develop low endotoxic and multi-immunogenic outer membrane vesicles (OMVs), a deletion mutant of the msbB gene in Salmonella enterica serovar Typhimurium (S. Typhimurium) was used as a source of low endotoxic OMV, and an expression vector of the canine parvovirus (CPV) VP2 epitope fused to the bacterial OmpA protein was constructed and transformed into the Salmonella ${\Delta}msbB$ mutant. In a lethality test, BALB/c mice injected intraperitoneally with the Salmonella ${\Delta}msbB$ mutant survived for 7 days, whereas mice injected intraperitoneally with the wild type survived for 3 days. Moreover, all mice inoculated orally with the ${\Delta}msbB$ mutant survived for 30 days, but 80% of mice inoculated orally with the wild type survived. The OmpA::CPV VP2 epitope fusion protein was expressed successfully and associated with the outer membrane and OMV fractions from the mutant S. Typhimurium transformed with the fusion protein-expressing vector. In immunogenicity tests, sera obtained from the mice immunized with either the Salmonella msbB mutant or its OMVs containing the OmpA::CPV VP2 epitope showed bactericidal activities against wild-type S. Typhimurium and contained specific antibodies to the CPV VP2 epitope. In the hemagglutination inhibition (HI) assay as a measurement of CPV-neutralizing activity in the immune sera, there was an 8-fold increase of HI titer in the OMV-immunized group compared with the control. These results suggested that the CPV-neutralizing antibody response was raised by immunization with OMV containing the OmpA::CPV VP2 epitope, as well as the protective immune response against S. Typhimurium in BALB/c mice.

Multi-Epitope Fusion Protein Eg mefAg-1 as a Serodiagnostic Candidate for Cystic Echinococcosis in Sheep

  • Tianli, Liu;Xifeng, Wang;Zhenzhong, Tian;Lixia, Wang;Xingxing, Zhang;Jun, Qiao;Qingling, Meng;Shasha, Gong;Ying, Chen;Xuepeng, Cai
    • Parasites, Hosts and Diseases
    • /
    • 제57권1호
    • /
    • pp.61-67
    • /
    • 2019
  • Cystic echinococcosis (CE) in sheep is a hazardous zoonotic parasitic disease that is caused by Echinococcus granulosus (Eg). At present, serological test is an important diagnostic method for Eg infection in domestic animals. Here, a fusion protein Eg mefAg-1 harboring 8 dominant B-cell epitopes of Eg such as antigen B, tetraspanin 1, tetraspanin 6, reticulon and Eg95 was produced in E. coli and evaluated for CE in sheep by indirect ELISA. Eg mefAg-1 showed in ELISA a high sensitivity (93.41%) and specificity (99.31%), with a coincidence rate of 97.02%. Overall, it is suggested that the Eg mefAg-1 could be a potential antigen candidate for CE serodiagnosis in sheep.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach

  • Islam, Sk Injamamul;Mou, Moslema Jahan;Sanjida, Saloa;Tariq, Muhammad;Nasir, Saad;Mahfuj, Sarower
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.11.1-11.20
    • /
    • 2022
  • Vibrio harveyi belongs to the Vibrio genus that causes vibriosis in marine and aquatic fish species through double-stranded DNA virus replication. In humans, around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness). A large amount of virus particles can be found in the cytoplasm of infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the virus. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as having a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computer revealed that the vaccination might elicit immune reactions in the actual life after injection. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.