• 제목/요약/키워드: multi-code ultrasonic

검색결과 6건 처리시간 0.022초

군집로봇을 위한 다중 코드 초음파센서의 코드조합 최적화 (Optimization of Code Combination in Multi-Code Ultrasonic Sensors for Multi-Robot Systems)

  • 문우성;조봉수;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.614-619
    • /
    • 2013
  • In multi-robot systems, ultrasonic sensors are widely used for localization and/or obstacle detection. However, conventional ultrasonic sensors have a drawback, that is, the interference problem among ultrasonic transmitters. There are some previous studies to avoid interferences, such as TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access). In multiple autonomous mobile robots systems, the Doppler-effect has to be considered because ultrasonic transceivers are attached to the moving robots. To overcome this problem, we find out the ASK (Amplitude Shift Keying)-CDMA technique is more robust to the Doppler-effect than the BPSK (Binary Phase Shift Keying)-CDMA technique. In this paper, we propose a new code-expression method and a Monte-Carlo based algorithm that optimizes the ultrasonic code combination in the ASK-CDMA ultrasonic system. The experimental results show that the proposed algorithm improves the performance of the ultrasonic multiple accessing capacity in the ASK-CDMA ultrasonic system.

다중 코드 초음파와 전파 신호 강도를 이용한 거리 측정 (A Distance Estimation Algorithm Based on Multi-Code Ultrasonic Sensor and Received Signal Strength)

  • 조봉수;김필수;문우성;백광렬
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.149-156
    • /
    • 2011
  • This paper reveals a distance estimation algorithm based on multi-code ultrasonic and wireless sensor network. For measuring the distances among the sensor nodes, each ultrasonic transmitter transmits multi-code ultrasonic signal simultaneously. Receivers use cross correlation method to separate the coded signals. The information of measured distances is broadcasted to each sensor node by wireless sensor network. The wireless sensor network measures the distance among the sensor nodes using the received signal strength of the broadcasting. The multi-code ultrasonic have a limitation of measurable distance. And the received signal strength is affected from an environment. This paper measures a distance using ultrasonic and a received signal strength in short range. These measured data are applied to the least square estimation algorithm. By the expansion of the fitting curve, a distance measurement in long range using the received signal strength is compensated. The coupled system reduce the error to an acceptable level.

다 개체 로봇의 위치인식을 위한 비컨 컬러 코드 스케줄링 (Beacon Color Code Scheduling for the Localization of Multiple Robots)

  • 박재현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.433-439
    • /
    • 2010
  • This paper proposes a beacon color code scheduling algorithm for the localization of multiple robots in a multi-block workspace. With the developments of intelligent robotics and ubiquitous technology, service robots are applicable for the wide area such as airports and train stations where multiple indoor GPS systems are required for the localization of the mobile robots. Indoor localization schemes using ultrasonic sensors have been widely studied due to its cheap price and high accuracy. However, ultrasonic sensors have some shortages of short transmission range and interferences with other ultrasonic signals. In order to use multiple robots in wide workspace concurrently, it is necessary to resolve the interference problem among the multiple robots in the localization process. This paper proposes an indoor localization system for concurrent multiple robots localization in a wide service area which is divided into multi-block for the reliable sensor operation. The beacon color code scheduling algorithm is developed to avoid the signal interferences and to achieve efficient localization with high accuracy and short sampling time. The performance of the proposed localization system is verified through the simulations and the real experiments.

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

코드를 이용한 초음파 동시구동 시스템 (Simultaneous Driving System of Ultrasonic Sensors Using Codes)

  • 김춘승;최병준;이상룡;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

급수가열기 충격판 설계변경에 따른 동체감육 완화에 관한 유동해석 연구 (A Study on the Fluid Mixing Analysis for the Shell Wall Thinning Mitigation by Design Modification of a Feedwater Heater Impingement Baffle)

  • 김경훈;황경모;진태은
    • 한국시뮬레이션학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-43
    • /
    • 2005
  • Feedwater heaters of many nuclear power plants have recently experienced wall thinning damage, which will increase as operating time progresses. As it is judged that the wall thinning damages have generated due to local fluid behavior around the impingement baffle installed in downstream of the high pressure turbine extraction steam line to avoid colliding directly with the tubes, numerical analyses using PHOENICS code were performed for two models with original clogged impingement baffle and modified multi-hole impingement baffle. To identify the relation between wall thinning and fluid behavior, the local velocity components in x-, y-, and z-directions based on the numerical analysis for the model with the clogged impingement baffle were compared with the wall thickness data by ultrasonic test. From the comparison of the numerical analysis results and the wall thickness data, the local velocity component only in the y-direction, and not in the x- and z-direction, was analogous to the wall thinning configuration. From the result of the numerical analysis for the modified impingement baffle to mitigate the shell wall thinning, it was identified that the shell wall thinning may be controlled by the reduction of the local velocity in the y-direction.

  • PDF