• Title/Summary/Keyword: multi-channel seismic reflection survey

Search Result 12, Processing Time 0.021 seconds

Shallow Crustal Structure of the Bransfield Basin Using an Autonomous Underwater Hydrophone

  • Kim, Kee-Hoon;Park, Min-Kyu;Hong, Jong-Kuk;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2006
  • We investigated subsurface structures of the Bransfield Basin, the Antarctic with AUH (Autonomous Underwater Hydrophne) which was designed to record abyssal T-waves generated from submarine earthquakes. The data obtained from a multi-channel seismic survey and an AUH were used for this study. A seismic reflection method was applied to the multi-channel seismic survey data in order to identify bathymetry and sedimentary structures, and the signals recorded in the AUH were used to obtain deep structures as we applied a seismic refraction method. Even though we couldn’t investigate deeper and detailed structure in study area because of lack of Airgun’s capacity, the AUH showed possibilities for being used for a marine seismic survey. From this experiment, we decided the upper and lower sediment layer velocities, detected irregular basement topography probably caused by submarine volcanic/magmatic activities, and retrieved the velocity of the basement and the depth of the sediment layer/basement boundary.

  • PDF

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

Development of High Resolution Multichannel Seismic Data Acquisition System and its Field Application (다중채널 고분해능 해양탄성파탐사 시스템 개발 및 현장적용)

  • Kim Youngjun;Yeo Eunmin;Kim Chansu;Shin Sungryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.293-298
    • /
    • 2005
  • In this study, we have developed the high resolution multichannel seismic data acquisition system and shallow marine seismic source. It is easy to operate and handle our source system which utilizes piezoelectric transducer of high electrical power. We have manufactured two 4-channel streamers for multi-channel marine seismic survey. In the recording part, we used 24bits and 8 channel high speed A/D board. Therefore, we could achieve the improvement of data quality and the efficiency of data acquisition. We compared the developed system with the conventional system to demonstrate its field applicability.

  • PDF

Study on Comparison of Methods for Estimation of Shear Wave Velocity in Core Zone of Existing Dam (기존 댐 코어죤의 전단파속도 산정기법 비교 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.33-43
    • /
    • 2008
  • In this study, for the purpose of evaluating the shear wave velocity in core zone, cross-hole test, down-hole test, MASW (Multi-channel Analysis of Surface Wave), and seismic reflection survey were carried out on the crest of the existing 'Y' dam. The results of field tests were compared one another. Furthermore, the field test results were compared with the result by the Sawada's empirical recommendation method. The purpose of this study is to compare the results of four kinds of field tests for evaluation of shear wave velocity in core zone of existing dam, to verify applicability of the empirical method which was recommended by Sawada and Takahashi, and to recommend a reasonable method for evaluation of shear wave velocity which is needed to evaluate tile maximum shear modulus of core zone. From the results of four kinds of field tests such as cross-hole test, down-hole test, MASW, and seismic reflection survey, it was found that the shear wave velocity distributions were similar within 18 m in depth and the results obtained by MASW and seismic reflection survey were almost the same by 30 m in depth. For evaluation of shear wave velocity in core zone of the existing dam, in consideration that it is not easy to bore the hole ill the core zone of existing dam, surface surveys such as MASW and seismic reflection method are recommended as realistic methods. On condition that it is impossible to conduct the field test and it is preliminary investigation, it is recommended that Sawada's low bound empirical equation be used.

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

Seismic reflection imaging of a Warm Core Ring south of Hokkaido (훗카이도 남부 Warm Core Ring의 탄성파 반사법 영상화)

  • Yamashita, Mikiya;Yokota, Kanako;Fukao, Yoshio;Kodaira, Shuichi;Miura, Seiichi;Katsumata, Katsuro
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • A multi-channel seismic reflection (MCS) survey was conducted in 2009 to explore the deep crustal structure of the Pacific Plate south of Hokkaido. The survey line happened to traverse a 250-km-wide Warm Core Ring (WCR), a current eddy that had been generated by the Kuroshio Extension. We attempted to use these MCS data to delineate the WCR fine structure. The survey line consists of two profiles: one with a shot interval of 200m and the other with a shot interval of 50 m. Records from the denser shot point line show much higher background noise than the records from the sparser shot point line. We identified the origin of this noise as acoustic reverberations between the sea surface, seafloor and subsurface discontinuities, from previous shots. Results showed that a prestack migration technique could enhance the signal buried in this background noise efficiently, if the sound speed information acquired from concurrent temperature measurements is available. The WCR is acoustically an assemblage of concave reflectors dipping inward, with steeper slopes (${\sim}2^{\circ}$) on th ocean side and gentler slopes (${\sim}1^{\circ}$) on the coastal side. Within the WCR, we recognised a 30-km-wide lens-shaped structure with reflectors on the perimeter.

Seismic Properties Study of Gas Hydrate in Deep Sea using Numerical Modeling Technique (수치 모델링 기술을 이용한 심해 가스 하이드레이트의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Park, Keun-Pil;Lee, Ho-Young;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.139-147
    • /
    • 2006
  • We had conducted a numerical modeling to investigate seismic properties of gas hydrate with field parameters acquired over the East sea in 1998. We used a 2-D staggered grid finite difference method to generate synthetic elastic seismograms for multi-channel seismic survey, OBC (Ocean Bottom Cable) survey and VCS (Vertical Cable Seismic) survey. The results of this study showed that the method using staggered grid yielded stable results and could be used to seismic imaging. We could find out the high amplitude anomaly and the phase reversal phenomenon of reflection wave at interface between the gas hydrate layer and free gas layer such a BSR (Bottom Simulating Reflector) which is the evidence for existence of gas hydrate in seismic reflection data. And we computed the reflection coefficients at the incident angles corresponding to offset distance with the synthetic seismograms. The reflection coefficients acquired from the numerical modeling were nearly consistent with the reflection coefficient computed by Shuey's equation.

SUPPRESSION OF SWELL EFFECT IN HIGH-RESOLUTION MARINE SEISMIC DATA USING CROSS-CORRELATION SCHEME (상호상관기법을 이용한 고분해능 천부해저탄성파탐사 자료에서의 너울효과 제거)

  • Kim,Jong-Cheon;Lee,Ho-Yeong;Kim,Ji-Su;Gang,Dong-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • Multi-channel seismic survey, which has been mainly employed in oil prospecting, is carried out as a high resolution shallow marine seismic exploration. Fault drop as small as 1 m can be resolved by employing high-resolution seismic survey. Similar to the effect of shallow inhomogenities in the land seismic data, due to occurrence of swell quite often higher than 1 m, shallow marine seismic data tend to be severely degraded. Suppression of such a swell effect is critical in processing of steps of marine seismic shallow high-resolution data. Compared to the moving average depth method, a newly developed method using cross-correlation technique is found out to be very effective in increasing the resolution of the shallow reflection events by accuratly elucidating the depth of sea bottom.

  • PDF

Hydrocarbon generation and indicator in the western Ulleung Basin (울릉분지 서부에서의 탄화수소 생성 및 지표)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.507-510
    • /
    • 2007
  • Piston cores retrieved from the western Ulleung Basin, East Sea were analyzed to examine the potential for hydrocarbon generation and to determine the hydrocarbon indicators. 2D multi-channel reflection seismic and Chirp data were also investigated for mapping and characterizing the geophysical hydrocarbon indicators such as BSR (bottom simulating reflector), blank zone, pock-mark etc. High organic carbon contents and sedimentation rates that suggest good condition for hydrocarbon generation. High pressure and low temperature condition, and high residual hydrocarbon concentrations are favor the formation of natural gas hydrate. In the piston cores, cracks generally oriented to bedding may indicate the gas expansion. The seismic data show several BSRs that are associated with natural gas hydrates and underlying free gas. A number of vertical to sub-vertical blank zones were well identified in the seismic sections. They often show the seismic pull-up structures, probably indicating the presence of high velocity hydrates. Numerous pockmarks were also observed in the Chirp profiles. They may indicate the presence of free gas below the hydrate stability zone as well.

  • PDF

A Study on Noise Characteristic of Multi-channel Seismic Data for the Hydrothermal Deposit Survey at Lau Basin, South Pacific (열수광상 탐사를 위한 남태평양 라우분지 다중채널 탄성파 자료의 잡음특성 연구)

  • Ok, Soo-Jong;Ha, Young-Soo;Lee, Jin-Woo;Shin, Sung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.235-235
    • /
    • 2011
  • Lau basin of south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. Korea Ocean Research and Development Institute tracked from 2004 to 2006 the hydrothermal activity to the extension of the northeast Lau Basin, targeting seamount. hydrothermal activity by tracking was found hydrothermal evidences. In this study, Marine seismic survey was carried out in the Lau basin seamount of the possibility of hydrothermal deposit. In particular, Marine magnetic survey and seismic survey was carried out at the same time in TA-12 seamount and noise characteristics were found in the seamount. the main process of data processing is Bandpass filter, FK filter, Deconvolution for noise attenuation such backscatter and multiple reflections. the migration is performed to compensate for reflection points followed by seamount of a slope. In this study, bedrock and upper strata could be identified and in the Future, the comparative method with Multi Beam Echo Sounder(MBES) are likely to derive the correct velocity model, the marine magnetic survey results should be considered.

  • PDF