• Title/Summary/Keyword: multi-channel MAC protocol

Search Result 65, Processing Time 0.021 seconds

A Design of Voice Over Sensor Network (VoSN) Base Station with Multi-Channel Support (다중 채널을 지원하는 Voice over Sensor Network(VoSN) Base Station 설계)

  • Lee, Hoon Jae;Lee, Jae Hyoung;Kang, Min Soo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.90-96
    • /
    • 2014
  • IEEE802.15.4 that is a standard for sensor networks is mainly used the wireless personal area networks such as ZigBee networks and it features low-power, low-speed data communication. However, recently research for interworking sensor network based voice communication and Session Initiation Protocol (SIP) for long-range, multi-user support has been actively conducted. In this paper, we designed a integrated base station based existing systems for interworking sensor networks based voice communication and SIP. We measured number of packet and delay according to increase the number of users to evaluate the performance of designed Base Station.

Hypergraph Game Theoretic Solutions for Load Aware Dynamic Access of Ultra-dense Small Cell Networks

  • Zhu, Xucheng;Xu, Yuhua;Liu, Xin;Zhang, Yuli;Sun, Youming;Du, Zhiyong;Liu, Dianxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.494-513
    • /
    • 2019
  • A multi-channel access problem based on hypergraph model in ultra-dense small cell networks is studied in this paper. Due to the hyper-dense deployment of samll cells and the low-powered equipment, cumulative interference becomes an important problem besides the direct interference. The traditional binary interference model cannot capture the complicated interference relationship. In order to overcome this shortcoming, we use the hypergraph model to describe the cumulative interference relation among small cells. We formulate the multi-channel access problem based on hypergraph as two local altruistic games. The first game aims at minimizing the protocol MAC layer interference, which requires less information exchange and can converge faster. The second game aims at minimizing the physical layer interference. It needs more information interaction and converges slower, obtaining better performance. The two modeled games are both proved to be exact potential games, which admit at least one pure Nash Equilibrium (NE). To provide information exchange and reduce convergecne time, a cloud-based centralized-distributed algorithm is designed. Simulation results show that the proposed hypergraph models are both superior to the existing binary models and show the pros and cons of the two methods in different aspects.

Hierarchical Dynamic Bandwidth Allocation Algorithm for Multimedia Services over Ethernet PONs

  • Ahn, Kye-Hyun;Han, Kyeong-Eun;Kim, Young-Chon
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.321-331
    • /
    • 2004
  • In this paper, we propose a new dynamic bandwidth allocation (DBA) algorithm for multimedia services over Ethernet PONs (passive optical networks). The proposed algorithm is composed of a low-level scheduler in the optical network unit (ONU) and a high-level scheduler in the optical line terminal (OLT). The hierarchical DBA algorithm can provide expansibility and efficient resource allocation in an Ethernet PON system in which the packet scheduler is separated from the queues. In the proposed DBA algorithm, the OLT allocates bandwidth to the ONUs in proportion to the weight associated with their class and queue length, while the ONU preferentially allocates its bandwidth to queues with a static priority order. The proposed algorithm provides an efficient resource utilization by reducing the unused remaining bandwidth caused by the variable length of the packets. We also define the service classes and present control message formats conforming to the multi-point control protocol (MPCP) over an Ethernet PON. In order to evaluate the performance, we designed an Ethernet PON system on the basis of IEEE 802.3ah "Ethernet in the first mile" (EFM) using OPNET and carried out simulations. The results are analyzed in terms of the channel utilization, queuing delay, and ratio of the unused remaining bandwidth.

  • PDF

Dynamic Bandwidth Allocation Algorithm with Two-Phase Cycle for Ethernet PON (EPON에서의 Two-Phase Cycle 동적 대역 할당 알고리즘)

  • Yoon, Won-Jin;Lee, Hye-Kyung;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.349-358
    • /
    • 2007
  • Ethernet Passive Optical Network(EPON), which is one of PON technologies for realizing FTTx(Fiber-To-The-Curb/Home/Office), can cost-effectively construct optical access networks. In addition, EPON can provide high transmission rate up to 10Gbps and it is compatible with existing customer devices equipped with Ethernet card. To effectively control frame transmission from ONUs to OLT EPON can use Multi-Point Control Protocol(MPCP) with additional control functions in addition to Media Access Control(MAC) protocol function. For EPON, many researches on intra- and inter-ONU scheduling algorithms have been performed. Among the inter-ONU scheduling algorithms, IPS(Interleaved Polling with Stop) based on polling scheme is efficient because OLT assigns available time portion to each ONU given the request information from all ONUs. Since the IPS needs an idle time period on uplink between two consecutive frame transmission periods, it wastes time without frame transmissions. In this paper, we propose a dynamic bandwidth allocation algorithm to increase the channel utilization on uplink and evaluate its performance using simulations. The simulation results show that the proposed Two-phase Cycle Danamic Bandwidth Allocation(TCDBA) algorithm improves the throughput about 15%, compared with the IPS and Fast Gate Dynamic Bandwidth Allocation(FGDBA). Also, the average transmission time of the proposed algorithm is lower than those of other schemes.

A Multi-Dimensional Node Pairing Scheme for NOMA in Underwater Acoustic Sensor Networks (수중 음향 센서 네트워크에서 비직교 다중 접속을 위한 다차원 노드 페어링 기법)

  • Cheon, Jinyong;Cho, Ho-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2021
  • The interest in underwater acoustic sensor networks (UWASNs), along with the rapid development of underwater industries, has increased. To operate UWASNs efficiently, it is important to adopt well-designed medium access control (MAC) protocols that prevent collisions and allow the sharing of resources between nodes efficiently. On the other hand, underwater channels suffer from a narrow bandwidth, long propagation delay, and low data rate, so existing terrestrial node pairing schemes for non orthogonal multiple access (NOMA) cannot be applied directly to underwater environments. Therefore, a multi-dimensional node pairing scheme is proposed to consider the unique underwater channel in UWASNs. Conventional NOMA schemes have considered the channel quality only in node pairing. Unlike previous schemes, the proposed scheme considers the channel gain and many other features, such as node fairness, traffic load, and the age of data packets to find the best node-pair. In addition, the sender employs a list of candidates for node-pairs rather than path loss to reduce the computational complexity. The simulation results showed that the proposed scheme outperforms the conventional scheme by considering the fairness factor with 23.8% increases in throughput, 28% decreases in latency, and 5.7% improvements in fairness at best.