• Title/Summary/Keyword: multi-channel MAC

Search Result 92, Processing Time 0.041 seconds

QoS-aware MAC protocol based on Single-channel Jamming Signal in the Multi-Hop Ad Hoc Network (QoS를 보장하는 Multi-Hop Ad Hoc Network용 Single-channel Jamming 신호 기반의 MAC 프로토콜)

  • Kim, Young-Man;Han, Wang-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.361-363
    • /
    • 2005
  • 최근의 컴퓨터 네트워킹 환경에서 무선 멀티미디어 응용 서비스에 대한 사용자의 요구는 날로 증가하고 있다. 그러므로 사용자에게 원활한 서비스를 제공위해서 QoS 보장을 위한 무선 네트워크 프로토콜의 설계는 중요하다. 본 논문에서는 무선 인터넷에서 QoS를 보장하기 위한 표준인 IEEE 802.11e[1]의 문제점들을 분석하고, Multi-Hop Ad Hoc Network에서 성능 향상을 위하여 Single-channel Jamming 신호를 기반으로 한 SJMAC(Sing1e-channel Jamming MAC) 프로토콜을 설계하고, NS2 모듈을 구현한 후에 성능 평가를 하였다. 기존 IEEE 802.11e과의 성능 비교를 위하여 NS2 (Network Simulator2)[2]에 SJMAC 모듈을 추가하여 제안된 프로토콜의 성능을 검증한다.

  • PDF

MAC protocol based on Single-channel Jamming Signal in the Multi-Hop Ad Hoc Network (Multi-Hop Ad Hoc Network용 Single-channel Jamming 신호 기반 MAC 프로토콜)

  • Kim, Young-Man;Han, Wang-Won;Park, Hong-Jae;Jung, Kyung-Tae;Choi, Nak-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.280-282
    • /
    • 2005
  • 급변하는 컴퓨터 네트워킹 환경에서 이동화에 따른 무선통신의 비중이 날로 더해지고 있다. 본 논문에서는 무선 인터넷 프로토콜 표준인 IEEE 802.11의 문제점들을 분석하고, Multi-Hop Ad Hoc Network에서 성능 향상을 위하여 Single-channel Jamming 신호를 기반으로 한 SJMAC(Single-channel Jamming MAC) 프로토콜을 설계하고, NS2 모듈을 구현한 후에 성능 평가를 하였다. 기존 IEEE 802.11과의 성능 비교를 위하여 NS2 (Network Simulator2)[1]에 SJMAC 모듈을 추가하여 제안된 프로토콜의 성능을 검증한다.

  • PDF

Cooperative Incumbent System Protection MAC Protocol for Multi-channel Ad-hoc Cognitive Radio Networks

  • Yi, Ke;Hao, Nan;Yoo, Sang-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1976-1996
    • /
    • 2011
  • Cognitive radio (CR) MAC protocol provides access control of unused spectrum resources without causing interference to primary users. To achieve this goal, in this paper a TDMA based cooperative multi-channel cognitive radio MAC (MCR-MAC) protocol is proposed for wireless ad hoc networks to provide reliable protection for primary users by achieving cooperative detection of incumbent system signals around the communication pair. Each CR node maintains transmission opportunity schedules and a list of available channels that is employed in the neighbor discovery period. To avoid possible signal collision between incumbent systems and cognitive radio ad hoc users, we propose a simple but efficient emergency notification message exchanging mechanism between neighbor CR nodes with little overhead. Our simulation results show that the proposed MCR-MAC can greatly reduce interference with primary users and remarkably improve the network throughput.

MAC Protocol for Reliable Multicast over Multi-Hop Wireless Ad Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • Multicast data communication is an efficient communication scheme, especially inmulti-hop ad hoc networks where the media access control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared to unicast, multicast over a wireless channel should be able to deal with varying channel conditions of multiple users and user mobility to provide good quality to all users. IEEE 802.11 does not support reliable multicast owing to its inability to exchange request-to-send/clear-to-send and acknowledgement packets with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. However, additional overhead is introduced, as a result, which degrades the system performance. In this paper, we propose an efficient wireless multicast MAC protocol with small control overhead required for reliable multicast in multi-hop wireless ad hoc networks. We present analytical formulations of the system throughput and delay associated with the overhead.

A Multi-Channel Scheduling MAC (MCS-MAC) Protocol for Wi-Fi Mesh Networks (Wi-Fi 메쉬 네트워크를 위한 다중 채널 스케줄링 MAC (MCS-MAC) 프로토콜)

  • Wu, Ledan;Yang, Jae-Young;Zhou, Yafeng;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.54-62
    • /
    • 2012
  • A Wi-Fi mesh network providing multi-hop wireless connections based on IEEE 802.11 PHY/MAC technology has recently received a significant attention as a network infrastructure that interconnects RFID systems and wireless sensor networks (WSNs). However, the current IEEE 802.11 contention-based MAC protocol cannot fully utilize the network capacity due to eithor frame collisions or unused network resources. In this paper, we propose a novel multi-channel scheduling MAC (MCS-MAC) protocol for Wi-Fi mesh networks. Under the secondary interference model of Wi-Fi mesh networks, the MCS-MAC protocol can maximize the network throughput via activation of collision-free links that has a maximal link weight. Through the simulations, we show that the throughput of the MCS-MAC protocol is at least three times higher than that of existing MAC protocols in Wi-Fi mesh networks.

Operation and Analysis of WAVE-based Multi-Channel MAC Protocol (WAVE 기반 멀티채널 MAC 프로토콜의 동작원리 분석)

  • Jung, Jin-Uk;Kang, Woo-Sung;Jin, Kyo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.54-57
    • /
    • 2010
  • Vehicular Ad-hoc Network the core technology of ITS supports safety service or information service to driver and passenger on the roads utilizing V2V and V2I communication. WAVE, the standard of the vehicular ad hoc networks, adopts IEEE 802.11p as MAC protocol and includes the channel coordination algorithm to utilize multiple channels. However, this standard shows the problem related with QoS guarantee of urgent data for driver's safety and the limitation of the performance improvement. In this paper, we introduce WAVE-based Multi-channel MAC protocols that have proposed to resolve above problems and describe their features.

  • PDF

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

Performance Analysis of Multicast Relay Transmissions in WiMedia D-MAC for OSMU N-Screen Services (OSMU N-스크린 서비스를 위한 WiMedia D-MAC에서 멀티캐스트 릴레이 전송 기술의 성능 분석)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2267-2273
    • /
    • 2016
  • In this paper, WiMedia Distributed-MAC protocol is adopted for development of an OSMU (One Source Multi Use) N-screen wireless multicast service. But, when considering wireless communication environment where channel error rate is time-variant, N-screen high-speed data is vulnerable to be lost. For this problem, a multicast relay scheme is proposed by analyzing Distributed-MAC protocol. In proposed multicast relay scheme, Multicast-free DRP Availability IE is combined and the relay node suitable for N-screen multicast transmissions is selected. Through this operation, it can avoid wireless channel with high errors and can transmit N-screen high-speed data. In simulation results, the proposed multicast relay scheme is compared with conventional Distributed-MAC multicast scheme in view points of throughput and energy consumption according to various numbers of multicast nodes and BER (Bit Error Rate) values in wireless channel. Through simulation results, it is explained that proposed multicast relay scheme should be adopted in WiMedia Distributed-MAC protocol to realize OSMU N-screen wireless multicast services.

MAC Aware Multi-Channel Routing Protocol for Multi-Interface Ad-Hoc Wireless Networks (다중-인터페이스 애드-혹 무선 네트워크를 위한 MAC 인식 다중-채널 라우팅 프로토콜)

  • Lim, Hunju;Joung, Sookyoung;Lee, Sungwha;Park, Inkap
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.249-258
    • /
    • 2013
  • In multi-hop ad hoc networks, multi-interface multi-channel architecture is being noticing as methodology to improve the effective bandwidth and end-to-end throughput, But since existing routing metrics designed for networks based on single-interface exactly can not reflects the nature of networks based on multi-interface multi-channel, we are not expected the effect of throughput improvement. there had been proposal of MCR that discover high throughput by using metrics such as channel diversity and interface switching cost. however, MCR have an problem that is degraded it's performance in congested networks, because it not reflects the impact of traffic load. in this paper, we propose MAMCR metric, which select high throughput paths under congested conditions by combination MCR with channel access time metric, and conform it's the effect of performance improvement by ns-2 simulation.

An Efficient Multi-Channel MAC Protocol for Cognitive Ad-hoc Networks with Idle Nodes Assistance (무선 인지 애드 혹 네트워크를 위한 휴지 노드를 활용하는 효율적인 다중 채널 MAC 프로토콜)

  • Gautam, Dinesh;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2011
  • In this paper, we propose an efficient multichannel MAC protocol with idle nodes assistance to avoid the multi-channel hidden terminal problem in cognitive radio ad hoc network and further to improve the performance of the network. The proposed MAC protocol can be applied to the cognitive radio adhoc network where every node is equipped with the single transceiver and one common control channel exists for control message negotiation. In the proposed protocol, the idle nodes available in the neighbour of communication nodes are utilized because the idle nodes have the information about the channels being utilized in their transmission range. Whenever the nodes are negotiating for the channel, idle nodes can help the transmitting and receiving nodes to select the free data channel for data transfer. With the proposed scheme, we can minimize the hidden terminal problem and decrease the collision between the secondary users when selecting the channel for data transfer. As a result, the performance of the network is increased.