• Title/Summary/Keyword: multi-camera

Search Result 879, Processing Time 0.024 seconds

The Development of Water Quality Monitoring System and its Application Using Satellite Image Data

  • Jang, Dong-Ho;Jo, Gi-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.376-381
    • /
    • 1998
  • In this study, we was measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. Also we investigated the possibility of extraction of water quality factors in rivers and water body by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract the environmental factors related with eutrophication, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible rays bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation were there. And at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible rays bands, the spectrum was highest. Second, as a result of the radiance reflectance Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high spectral reflectance at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$ each. Third, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution chart when carried out ratio of B3 and BS to B7. And Band 7 was useful for making the distribution chart of suspended sediments. And when we carried out PCA, suspended sediments and turbidity had distributions at PC 1 , PC 4 each similarly to ground truth data. Above results can be changed according to the change of season and time. Therefore, in order to analyze more exactly the environmental factors of water quality by using LRC data, we need to investigate constantly the ground truth data and the radiance feature of reflectance of water body. Afterward in this study, we will constantly analyze the radiance feature of the surface of water in water body by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFs). Besides, we will gather the data of water quality analysis in water body and analyze the pattern of water pollution.

  • PDF

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구)

  • Min, Se-Hong;Bae, Yeon-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.168-177
    • /
    • 2011
  • The combustion test for real box of AC outdoor unit has been performed in this study in order to estimate the fire hazard in multi-system type of AC outdoor unit which is currently used for commercial use. The result showed that in test, there was explosion inside of AC outdoor unit, and flame erupted and fire spread through upper side grill. And then this fire burnt the combustibles such as wires, electronic control board, heat exchange copper plate and plastics etc inside the unit, refrigerant gas pipe was burst due to fire, and accelerated the explosion and flame eruption to outside while the refrigerant was erupting. It is found in this test that the maximum heat release rate of AC outdoor unit is 5,830 kW, the maximum internal temperature measured with infrared camera and thermocouple is $1,201^{\circ}C$, maximum ambient temperature is $881^{\circ}C$, and flame rose higher than about 5 m. It is concluded that the fire in AC outdoor unit cause fire to combustibles around the unit, and may give big damage by generating the secondary fire. It is expected that the result obtained from the test on the real object may be applied to fire realization of AC outdoor unit and estimation of fire spreading to the combustibles around in the future computer simulation.

A Feasibility Study for Mapping Using The KOMPSAT-2 Stereo Imagery (아리랑위성 2호 입체영상을 이용한 지도제작 가능성 연구)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Seo, Hyun-Duck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2012
  • The KOrea Multi-Purpose SATellite(KOMPSAT)-2 has a capability to provide a cross-track stereo imagery using two different orbits for generating various spatial information. However, in order to fully realize the potential of the KOMPSAT-2 stereo imagery in terms of mapping, various tests are necessary. The purpose of this study is to evaluate the possibility of mapping using the KOMPSAT-2 stereo imagery. For this, digital plotting was conducted based on the stereoscopic images. Also the Digital Elevation Model(DEM) and an ortho-image were generated using digital plotting results. An accuracy of digital plotting, DEM, and ortho-image were evaluated by comparing with the existing data. Consequently, we found that horizontal and vertical error of the modeling results based on the Rational Polynomial Coefficient(RPC) was less than 1.5 meters compared with the Global Positioning System(GPS) survey results. The maximum difference of vertical direction between the plotted results in this study and the existing digital map on the scale of 1/5,000 was more than 5 meters according as the topographical characteristics. Although there were some irregular parallax on the images, we realized that it was possible to interpret and plot at least seventy percent of the layer which was required the digital map on the scale of 1/5,000. Also an accuracy of DEM, which was generated based on the digital plotting, was compared with the existing LiDAR DEM. We found that the ortho-images, which were generated using the extracted DEM in this study, sufficiently satisfied with the requirement of the geometric accuracy for an ortho-image map on the scale of 1/5,000.

A Study on the Estimation of Multi-Object Social Distancing Using Stereo Vision and AlphaPose (Stereo Vision과 AlphaPose를 이용한 다중 객체 거리 추정 방법에 관한 연구)

  • Lee, Ju-Min;Bae, Hyeon-Jae;Jang, Gyu-Jin;Kim, Jin-Pyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.279-286
    • /
    • 2021
  • Recently, We are carrying out a policy of physical distancing of at least 1m from each other to prevent the spreading of COVID-19 disease in public places. In this paper, we propose a method for measuring distances between people in real time and an automation system that recognizes objects that are within 1 meter of each other from stereo images acquired by drones or CCTVs according to the estimated distance. A problem with existing methods used to estimate distances between multiple objects is that they do not obtain three-dimensional information of objects using only one CCTV. his is because three-dimensional information is necessary to measure distances between people when they are right next to each other or overlap in two dimensional image. Furthermore, they use only the Bounding Box information to obtain the exact coordinates of human existence. Therefore, in this paper, to obtain the exact two-dimensional coordinate value in which a person exists, we extract a person's key point to detect the location, convert it to a three-dimensional coordinate value using Stereo Vision and Camera Calibration, and estimate the Euclidean distance between people. As a result of performing an experiment for estimating the accuracy of 3D coordinates and the distance between objects (persons), the average error within 0.098m was shown in the estimation of the distance between multiple people within 1m.

Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle (복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석)

  • Son, Juwon;Kim, Donghee;Choi, Byungwoong;Lee, Youngjin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.51-59
    • /
    • 2018
  • The Multi-Mission Unmanned Surface Vehicle(MMUSV), which is manufactured using glass Fiber Reinforced Plastic(FRP) material, is designed to perform a surveillance and reconnaissance on the sea. Various navigation sensors, such as RADAR, RIDAR, camera, are mounted on a mast to perform an autonomous navigation. And a dummy gun is mounted on the deck of the MMUSV for a target tracking and disposal. It is necessary to analyze a strength for structures mounted on the deck because the MMUSV performs missions under a severe sea state. In this paper, a strength analysis of the mast structure is performed on static loads and lateral external loads to verify an adequacy of the designed mast through a series of simulations. Based on the results of captive model tests, a strength analysis for a heave motion of the mast structure is conducted using a simulation tool. Also a simulation and fatigue test for a mounting part between the MMUSV and the dummy gun are performed using a specimen. The simulation and test results are represented that a structure of the mast and mounting part of the dummy gun are appropriately designed.he impact amount are performed through simulation and experiments.

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

Attention based Feature-Fusion Network for 3D Object Detection (3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크)

  • Sang-Hyun Ryoo;Dae-Yeol Kang;Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2023
  • Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.

A Study on the Distributional Characteristics of Unminable Manganese Nodule Area from the Investigation of Seafloor Photographs (해저면 영상 관찰을 통한 망간단괴 채광 장애지역 분포 특성 연구)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee;Ko, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.173-182
    • /
    • 2007
  • It is well known that manganese nodules enriched with valuable metals are abundantly distributed in the abyssal plain area in the Clarion-Clipperton (C-C) fracture zone of the northeast Pacific. Previous studies using deep-sea camera (DSC) system reported different observations about the relation of seafloor topographic change and nodule abundance, and they were sometimes contradictory. Moreover, proper foundation on the estimation of DSC underwater position, was not introduced clearly. The variability of the mining condition of manganese nodule according to seafloor topography was examined in the Korea Deep Ocean Study (KODOS) area, located in the C-C zone. In this paper, it is suggested that the utilization of deep towing system such as DSC is very useful approach to whom are interested in analysing the distributional characteristics of manganese nodule filed and in selecting promising minable area. To this purpose, nodule abundance and detailed bathymetry were acquired using deep-sea camera system and multi-beam echo sounder, respectively on the seamount free abyssal hill area of southern part ($132^{\circ}10'W$, $9^{\circ}45'N$) in KODOS regime. Some reasonable assumptions were introduced to enhance the accuracy of estimated DSC sampling position. The accuracy in the result of estimated underwater position was verified indirectly through the comparison of measured abundances on the crossing point of neighboring DSC tracks. From the recorded seafloor images, not only nodules and sediments but cracks and cliffs could be also found frequently. The positions of these probable unminable area were calculated by use of the recorded time being encountered with them from the seafloor images of DSC. The results suggest that the unminable areas are mostly distributed on the slope sides and hill tops, where nodule collector can not travel over.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.