• Title/Summary/Keyword: multi-band antenna

Search Result 230, Processing Time 0.031 seconds

Planar Slot Wideband Antenna for Multiple Communication Services (다중 통신서비스를 위한 평판 슬롯 광대역 안테나)

  • Park, Dong-Kook;Bataller, Miguel Ferrando
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.90-96
    • /
    • 2020
  • As various communication services have emerged due to the development of mobile communication technology, there is a need for a wideband antenna supporting multiple communication services with one antenna. In this paper, we propose a planar slot wideband antenna that can support all the communication services of 3.1~4.99GHz, the low frequency band of 5G, in addition to the existing communication services such as WiFi, LTE 2300/2500, and WiMAX. Through the simulation, the optimized antenna design parameters were obtained, and the antenna was fabricated to implement an antenna with a frequency bandwidth of 1.96~6.01GHz (S11 <-10dB) and presented the radiation pattern and gain of the antenna. The proposed antenna is a multi-band antenna that can provide all the services of LTE, Wifi, WiMAX, and 5G low frequency bands. It can be used as a repeater antenna in radio shadow area such as buildings, dense areas, and ships.

Design of Wideband Microstrip Antenna using Multi-dimensional Pattern Technology (다차원 패턴기술을 이용한 광대역 마이크로스트립 안테나 설계)

  • 이호준;박규호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.13-19
    • /
    • 2004
  • This paper demonstrates the detailed study of a microstrip Yagi-Uda antenna with and without PBG structure at wireless LAN(5725∼5825 MHz) frequency band. The impedance bandwidth of the antenna with the PBG holes is greater than (about 30 MHz) that of its counter part without PBG holes. The measured gains of the antenna at the frequency band are 7 dB and 6 dB respectively for antenna with and without PBG. The improvement of gain of about 1 dB is likely due to the suppression of surface wave.

  • PDF

Wideband Monopole Antenna for Multiband Mobile Communication Applications

  • Rhyu, Han-Phil;Lee, Hyun-Kyu;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.71-75
    • /
    • 2008
  • A folded monopole antenna is proposed for mobile communication applications. The proposed antenna covers CDMA and GSM at low frequency band, and it has a wide bandwidth (6.85 GHz) at high frequency band to cover GPS, DCS, USPCS, UHfS, WLAN (2.4, 5.2, 5.8 GHz), and the future application of IEEE 802.16e mobile WiMAX.

  • PDF

Design of Multi-band Ceramic Chip Antenna for WLAN using LTCC Technology (LTCC 공정기술을 이용한 무선랜용 다중대역 칩 안테나 설계)

  • 박영호;이용기;이윤도;이상원;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.443-446
    • /
    • 2004
  • In this paper, a multi-band ceramic chip antenna for WLAN(Wireless LAN) applications is designed. The design target is to obtain 0 dBi of coverage gain with omni directional radiation pattern. The antenna is fabricated using Low Temperature Co-fired Ceramic(LTCC) technology. The size of the chip antenna is $2.2{\times}9.65{\times}1.02$mm. The measured antenna gain is 1 dBi at 2.44 GHz and 0.5 dBi at 5.5 GHz. The omni directional radiation pattern for the two operating bands is obtained. The measured bandwidth(S11=-10 dB) are 90 MHz at 2.44 GHz and 1280 MHz at 5.5 GHz respectively

A Wide-band Multi-layer Antenna Design using Double Resonance (이중공진을 사용한 적층기판용 광대역 안테나 설계)

  • Lee, Kook-Joo;Zhang, Mei-Shan;Lee, Jung-Aun;Han, Myeong-Woo;Kim, Moon-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.431-434
    • /
    • 2011
  • In this paper, bandwidth enhanced design of dielectric resonator antenna fabricated in multi-layer substrate is introduced. The proposed dielectric resonator antenna is operating with fundamental TE101 mode and higher-order TM111 mode. Each resonance frequency is dependent on resonator dimensions. As increasing the height of radiating aperture, the higher-order TM111 mode resonance frequency approach the fundamental TE101 mode resonance frequency and the antenna bandwidth increase by double resonance. Three different aperture height size antennas that operated at 7GHz are fabricated in FR4 multi-layer substrate. Measured 10 dB matching bandwidth is 8 percent for single resonace antenna and 18 percent for double resonance antenna.

MIMO Antenna Design and Beam Pattern Verification for W-band Autonomous Driving Radar (W대역 자율주행 레이다용 MIMO 안테나 설계 및 빔 패턴 검증 방법)

  • Changhyun Lee;Junhyeok Choi;Milim Lee;Shinmyong Park;Seungyeol Baek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.123-129
    • /
    • 2023
  • MIMO antenna is a field in which various researches have been actively conducted for a long time, and its design concept is universally well known. However, Unlike conventional MIMO antennas, MIMO antennas for autonomous driving radars, which have recently been attracting attention, are designed in W-band which is a millimeter wave band, and must also meet novel design conditions to satisfy the performance of autonomous driving radars. Therefore, a novel and different approach is required for the design and beam pattern verification of the MIMO antenna for autonomous driving radar. In this paper, a MIMO antenna is designed and the design process to satisfy the conditions of a W-band autonomous driving radar is introduced, and proposes a beam pattern verification method for a W-band MIMO antenna mounted on an autonomous driving radar system.

PIFA and IFA Hybrid Antenna for the Data Communication Terminal (데이터통신 단말기용 PIFA 및 IFA 결합 안테나)

  • Chun, Moon-Kyu;Son, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • In this paper, we designed and implemented a PIFA(Planer Inverted F Antenna) and IFA(Inverted F Antenna) hybrid antenna for the data communication terminal such as smart phone. Studied hybrid antenna has multi-band characteristics by the simultaneous operation both PIFA and IFA under a feeding structure. VSWR measurement of implemented antenna was satisfied 3:1 over GSM900/USPCS/WCDMA band. Measured average gains and efficiencies were -2.19~-3.63 dBi and 43.31~60.33 % for the GSM900 band, and -2.16~-10.67 dBi and 8.56~60.78 % for the USPCS/WCDMA band.

A Compact CPW-fed Antenna with Two Slit Structure for WLAN/WiMAX Operations (WLAN/WiMAX 대역에서 동작하는 두 개의 슬릿 구조를 갖는 CPW 급전방식 소형 안테나)

  • Kim, Woo-Su;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.759-766
    • /
    • 2022
  • In this paper, we propose a multi-band small antenna with CPW(Coplanar Waveguide) feeding structure WLAN(Wireless Local Area Network) and WiMAX (Worldwide Interoperability for Microwave Access) bands. The proposed antenna is designed two slit in the modified monopole type radiator and FR-4 substrate, which is thickness 1.0 mm, and the dielectric constant is 4.4. The size of proposed antenna is 15.1 mm⨯16.41 mm, and total size of proposed antenna is 17.5 mm⨯16.4 mm. From the fabrication and measurement results, From the fabrication and measurement results, bandwidths of 439 MHz (2.06 to 2.499 GHz), 840 MHz (3.31 to 4.25) and 1,315 MHz (5.23 to 6.545 GHz) were obtained on the basis of -10 dB impedance bandwidth. Also, 3D radiation pattern characteristics of the proposed antenna are displayed and measured gains 2.24 dBi, 2.83 dBi, and 2.0 dBi shown in the three frequency band, respectively.

Folded Monopole Antenna Using the Rectangular Patch for Multi-band Wireless USB Dongle Applications (다중대역 무선 USB 동글 장치를 위한 사각 패치를 이용한 폴디드 모노폴 안테나)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2013
  • We in order to use WLAN communication device planned wireless USB dongle internal antenna of 2.4 GHz/5.8 GHz band. So it uses square patch dual-wideband and quality is satisfactory and it designed print folded monopole antenna of the shape which is simple. The thickness of the antenna was fed by a $50{\Omega}$ coaxial cable feeding 1mm dielectric constant 4.4 FR4 substrate was used. The overall size of the antenna is $20mm{\times}50mm$. So the internal antenna is suitable. Measurement results of the fabricated antenna, the return loss of more than 10 dB in the two bands could be obtained. Radiation pattern has a maximum gain of 3.75 dBi value.

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.