• Title/Summary/Keyword: multi-band

Search Result 1,281, Processing Time 0.029 seconds

Outage Probability and Throughput Management Using CoMP under the Coexistence of PS-LTE and LTE-R Networks (안전망과 철도망 공존환경에서 협력통신을 이용한 아웃티지 및 수율 관리)

  • Lim, WonHo;Jeong, HyoungChan;Ahmad, Ishtiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • In the Republic of Korea, the LTE-based public safety (PS-LTE) network is being built for the 700 MHz frequency band. However, the same bands are also assigned to the LTE-based high-speed railway (LTE-R) network. Therefore, it is essential to utilize the co-channel interference management schemes for the coexistence of two LTE networks in order to increase the system throughput and to reduce the user outage probability. In this paper, we focus on the downlink (DL) system for the coexistence of PS-LTE and LTE-R networks by considering non radio access network (RAN) sharing and LTE-R RAN sharing by PS-LTE users (UEs) to analyze the UE throughput. Moreover, we also utilize the cooperative communications schemes, such as coordinated multipoint (CoMP) for the coexistence of PS-LTE and LTE-R networks in order to reduce the UE outage probability. We categorize the coexistence of PS-LTE and LTE-R networks into four different scenarios, and evaluate the performance of each scenario by the important performance indexes, such as UE average throughput and UE outage probability.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

The Study on Optimal Image Processing and Identifying Threshold Values for Enhancing the Accuracy of Damage Information from Natural Disasters (자연재해 피해정보 산출의 정확도 향상을 위한 최적 영상처리 및 임계치 결정에 관한 연구)

  • Seo, Jung-Taek;Kim, Kye-Hyun
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.1-11
    • /
    • 2011
  • This study mainly focused on the method of accurately extracting damage information in the im agery change detection process using the constructed high resolution aerial im agery. Bongwha-gun in Gyungsangbuk-do which had been severely damaged from a localized torrential downpour at the end of July, 2008 was selected as study area. This study utilized aerial im agery having photographing scale of 30cm gray image of pre-disaster and 40cm color image of post-disaster. In order to correct errors from the differences of the image resolution of pre-/post-disaster and time series, the prelim inary phase of image processing techniques such as normalizing, contrast enhancement and equalizing were applied to reduce errors. The extent of the damage was calculated using one to one comparison of the intensity of each pixel of pre-/post-disaster im aged. In this step, threshold values which facilitate to extract the extent that damage investigator wants were applied by setting difference values of the intensity of pixel of pre-/post-disaster. The accuracy of optimal image processing and the result of threshold values were verified using the error matrix. The results of the study enabled the early exaction of the extents of the damages using the aerial imagery with identical characteristics. It was also possible to apply to various damage items for imagery change detection in case of utilizing multi-band im agery. Furthermore, more quantitative estimation of the dam ages would be possible with the use of numerous GIS layers such as land cover and cadastral maps.

Study on the Measurement System for MIMO Channel Considering Urban Environment at Microwave Frequencies (도심 환경을 고려한 마이크로파 대역 MIMO 전파 채널 측정 시스템에 관한 연구)

  • Lim, Jae-Woo;Kwon, Se-Woong;Moon, Hyun-Wook;Park, Yoon-Hyun;Yoon, Young-Joong;Yook, Jong-Gwan;Jeong, Jin-Soub;Kim, Jong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1142-1149
    • /
    • 2007
  • In this paper, the development of wideband MIMO channel sounder and a pilot measurement result is described for research on the multi antenna radio propagation characteristics considering urban environment at microwave frequencies. We developed $4{\times}4$ MIMO(BW:100 MHz) channel sounder using the high speed switching mechanism and periodic pseudo random binary signals method considering next generation mobile communication system. A pilot measurement campaign at the urban area of Bundang is presented for confirmation of system performance. From the analysis of measurement data, wideband path loss exponent of 3.7 and 8 GHz band is 1.79 and 1.76. Average RMS delay spread is 200 ns and 42 ns respectively. From the experiment results, operation of this measurement system is confirmed considering research for a coverage, SNR and channel capacity in urban environment at microwave frequencies.

Survey of Faint Quasar candidates at 4.7 ≤ z ≤ 5.2

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee;Park, Woojin;Ji, Tae-geun;Jeon, Yiseul;Kim, Minjin;Kim, Dohyeong;Kim, Jae-Woo;Taak, Yoon Chan;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.4-60
    • /
    • 2018
  • To investigate the impact of the high-redshift quasars on cosmic reionization, the faint end slope of the quasars luminosity function has to be determined precisely. More quasars with low luminosity are needed to constrain the contribution to reionization in the early universe. However, finding these quasars has been regarded as tough process owing to the improper shallow depth of imaging data. In recent days, the release data of Subaru Hyper Suprime-Cam (HSC) Strategic Program survey which provide the deep images reaching ~ 25 mag facilitates searching the faint quasars candidates. To find faint quasar candidates in ELAIS-N1 field, along with the HSC data, two near-infrared (NIR) data sets also be used : The Infrared Medium-deep Survey (IMS) and The UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep Extragalactic Survey (DXS). Quasar candidates selected from the multi-band color cut were observed by the SED camera for QUasars in EArly uNiverse (SQUEAN) instrument. To trace the redshifted Lyman break efficiently, appropriate medium bands comparable to targeted redshift range are chosen. The most reliable quasar candidates are finally determined through SED fitting. Using this less luminous quasars candidates, we can speculate the relation between the quasar growth and the host galaxy unbiasedly and estimate the contribution to the cosmic reionization.

  • PDF

A UHF-band Passive Temperature Sensor Tag Chip Fabricated in $0.18-{\mu}m$ CMOS Process ($0.18-{\mu}m$ CMOS 공정으로 제작된 UHF 대역 수동형 온도 센서 태그 칩)

  • Pham, Duy-Dong;Hwang, Sang-Kyun;Chung, Jin-Yong;Lee, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.45-52
    • /
    • 2008
  • We investigated the design of an RF-powered, wireless temperature sensor tag chip using $0.18-{\mu}m$ CMOS technology. The transponder generates its own power supply from small incident RF signal using Schottky diodes in voltage multiplier. Ambient temperature is measured using a new low-power temperature-to-voltage converter, and an 8-bit single-slope ADC converts the measured voltage to digital data. ASK demodulator and digital control are combined to identify unique transponder (ID) sent by base station for multi-transponder applications. The measurement of the temperature sensor tag chip showed a resolution of $0.64^{\circ}C/LSB$ in the range from $20^{\circ}C$ to $100^{\circ}C$, which is suitable for environmental temperature monitoring. The chip size is $1.1{\times}0.34mm^2$, and operates at clock frequency of 100 kHz while consuming $64{\mu}W$ power. The temperature sensor required a -11 dBm RF input power, supported a conversion rate of 12.5 k-samples/sec, and a maximum error of $0.5^{\circ}C$.

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.

Study on Application of Ultrasonic Propagation Imager for Non-destructive Evaluation of Composite Lattice Structure (복합재 격자 구조 비파괴평가를 위한 초음파전파 영상화 시스템 활용 연구)

  • Park, Jae-Yoon;Shin, Hye-Jin;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • Composite lattice structures are tried to be used in various fields because of its benefit in physical properties. With increase of demand of the composite lattice structure, nondestructive testing technology is also required to certificate the quality of the manufactured structures. Recently, research on the development of the composite lattice structure in Republic of Korea was started and accordingly, fast and accurate non-destructive evaluation technology was needed to finalize the manufacturing process. This paper studied non-destructive testing methods for composite lattice structure using laser ultrasonic propagation imaging systems. Pulse-echo ultrasonic propagation imaging system was able to inspect a rib structure wrapped with a skin structure. To reduce the time of inspection, a band divider, which can get signal in different frequency bands at once, was developed. Its performance was proved in an aluminum sandwich panel. In addition, to increase a quality of results, curvature compensating algorithm was developed. On the other hand, guided wave ultrasonic propagation imaging system was applied to inspect delamination in a rib structure. To increase an area of inspection, multi-source ultrasonic wave propagation image was applied, and defects were successfully highlighted with variable time window amplitude mapping algorithm. These imply that ultrasonic propagation imaging systems provides fast and accurate non-destructive testing results for composite lattice structure in a stage of the manufacturing process.

Detection of Irradiated Milk Formulas using Electron Spin Resonance (전자스핀공명법(ESR)을 이용한 방사선조사 조제유류의 판별)

  • Woon, Jae-Ho;Park, Byeong-Ryong;Choi, Byung-Kook;Kim, Na-Young;Jeong, Hong-Jeom;Cheong, Ki-Soo;Kim, Hee-Sun;Kim, Chang-Seob
    • Journal of Dairy Science and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • Electron Spin Resonance (ESR) spectroscopy has been used to detect the presence of radiation-induced free radicals in biological samples since the mid 1950s and to irradiate foods containing cellulose, crystalline sugar, and bone. Therefore, we analyzed the ESR spectrum of irradiated infant formula and its ingredients in this study. Samples were irradiated with 2 different radiation sources of $^{60}Co$ gamma rays and electron beams (EBs), and the absorbed doses were 0, 1, 3, 5, and 7 kGy. ESR measurements were performed under normal atmospheric conditions using a JEOL JES-FA100 spectrometer equipped with an X-band bridge. Irradiated infant formula showed anunsymmetrical spectrum ($g_1$=2.0050, $g_2$=2.0006); in contrast, non-irradiated samples showed asymmetrical spectrum. The ingredients of irradiated samples showed a multi-component ESR signal in glucose and lactose and a singlet-type spectrum in milk powder (g=2.0050). $R^2$ of the dose-response curve showed a fine linearity of over 0.95 across the entire sample. We also compared the spectra of identical samples irradiated with $^{60}Co$ gamma rays and EBs, because EBs can be used for food irradiation in foreign countries, although this is not permitted in Korea. However, we could not find any significant differences according to the types of radiation source. Thus, ESR spectroscopy can be used to detect irradiated infant formula and several types of primary ingredients in this formula.

  • PDF

On the Design of Multi-layered Polygonal Helix Antennas (다각 다단 구조 헬릭스 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.249-258
    • /
    • 2006
  • In this letter, we propose a novel printed helix antenna for RFID reader in UHF band. The printed strip line of the antenna is first wound up outside a polygonal shaped layer and then the winding continues on an inner layer to control the overall gain and the radiation pattern. In addition, the winding pitch angles on each layer have either negative or positive values resulting in the broad CP bandwidth. The detail structure of the antenna was optimized using Pareto genetic algorithm(GA), so as to obtain excellent performances for RFID reader antennas. The optimized two-layered polygonal helix was fabricated on the cardboard of a flexible substrate and the performances were measured and compared with the simulations. The fabricated antenna was made up of copper tape which can adhere to a flexible cardboard and had 21.4 % matching bandwidth, 31.9 % CP bandwidth, readable range of $5.5m^2$ with kr=3.2. Also based on the current distribution of the strip line of the antenna and sensitivity of the antenna bents points, we confirmed that the antenna has the quarter-wave transformer near the feed for the broad matching bandwidth and radiates the traveling wave for the broad CP bandwidth using the bent strip line.