• Title/Summary/Keyword: multi-UAVs

Search Result 61, Processing Time 0.02 seconds

Multi-UAV Mission Allocation and Optimization Technique Based on Discrete-Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션 기반의 다수 무인기 임무 할당 및 최적화 기법)

  • Lee, Dong Ho;Jang, Hwanchol;Kim, Sang-Hwan;Chang, Woohyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this paper, we propose a heterogenous mission allocation technique for multi-UAV system based on discrete event modeling. We model a series of heterogenous mission creation, mission allocation, UAV departure, mission completion, and UAV maintenance and repair process as a mathematical discrete event model. Based on the proposed model, we then optimize the number of UAVs required to operate in a given scenario. To validate the optimized number of UAVs, the simulations are executed repeatedly, and their results are analyzed. The proposed mission allocation technique can be used to efficiently utilize limited UAV resources, and allow the human operator to establish an optimal mission plan.

Genetic Algorithm-Based Approaches for Enhancing Multi-UAV Route Planning

  • Mohammed Abdulhakim Al-Absi;Hoon Jae Lee;Young-sil Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.8-19
    • /
    • 2023
  • This paper presents advancement in multi- unmanned aerial vehicle (UAV) cooperative area surveillance, focusing on optimizing UAV route planning through the application of genetic algorithms. Addressing the complexities of comprehensive coverage, two real-time dynamic path planning methods are introduced, leveraging genetic algorithms to enhance surveillance efficiency while accounting for flight constraints. These methodologies adapt multi-UAV routes by encoding turning angles and employing coverage-driven fitness functions, facilitating real-time monitoring optimization. The paper introduces a novel path planning model for scenarios where UAVs navigate collaboratively without predetermined destinations during regional surveillance. Empirical evaluations confirm the effectiveness of the proposed methods, showcasing improved coverage and heightened efficiency in multi-UAV path planning. Furthermore, we introduce innovative optimization strategies, (Foresightedness and Multi-step) offering distinct trade-offs between solution quality and computational time. This research contributes innovative solutions to the intricate challenges of cooperative area surveillance, showcasing the transformative potential of genetic algorithms in multi-UAV technology. By enabling smarter route planning, these methods underscore the feasibility of more efficient, adaptable, and intelligent cooperative surveillance missions.

Development of Adaptive Ground Control System for Multi-UAV Operation and Operator Overload Analysis (복수 무인기 운용을 위한 적응형 지상체 개발 및 운용자 과부하 분석)

  • Oh, Jangjin;Choi, Seong-Hwan;Lim, Hyung-Jin;Kim, Seungkeun;Yang, Ji Hyun;Kim, Byoung Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.529-536
    • /
    • 2017
  • The general ground control system has control and information display functions for the operation of a single unmanned aerial vehicle. Recently, the function of the single ground control system extends to the operation of multiple UAVs. As a result, operators have been exposed to more diverse tasks and are subject to task overload due to various factors during their mission. This study proposes an adaptive ground control system that reflects the operator's condition through the task overload measurement of multiple UAV operators. For this, the ground control software is developed to control multiple UAVs at the same time, and the simulator with six degree-of-freedom aircraft dynamics is constructed for realistic human-machine-interface experiments by the operators.

Cooperative Surveillance and Boundary Tracking with Multiple Quadrotor UAVs (복수 쿼드로터 무인기를 이용한 협업 감시 및 경계선 추종)

  • Lee, Hyeon Beom;Moon, Sung Won;Kim, Woo Jin;Kim, Hyoun Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.423-428
    • /
    • 2013
  • This paper investigates a boundary tracking problem using multiple quadrotor UAVs to detect and track the boundary of physical events. We set the boundary estimation problem as a classification problem of the region in which the physical events occur, and employ SVL (Support Vector Learning). We also demonstrate a velocity vector field which is globally attractive to a desired closed path with circulation at the desired speed and a virtual phase for stabilizing the collective configuration of the multiple quadrotors. Experimental results with multiple quadrotors show that this study provides good performance of the collective boundary tracking.

Comparison of Each Commercial Nozzle on the Application Pattern of Pesticide for Unmanned Aerial Vehicles (UAV) (농업용 멀티콥터를 활용한 무인항공기용 작물보호제 살포양상에 대한 상용노즐별 차이)

  • Park, Bueyong;Jeong, In-Hong;Kim, Sun Woo;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.229-234
    • /
    • 2021
  • This study investigated spray patterns and coverage generated by three types of commercial nozzles for spraying pesticides with Unmanned Aerial Vehicles (UAVs) using a multi-copter. Flufenoxuron+metaflumizone SC and bifenthrin EC were sprayed. The falling particles of the spraying agent were measured using WSP (Water and oil Sensitive Paper) and the coverage was determined. The results showed that the uniformity of falling particles was different according to the difference in wind strength, and there was no difference for different formulations. The injection amount for each nozzle was found to be different from the official information provided by the manufacturers. These results could be used to establish guidelines for the control of UAVs and pesticide registration testing.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Conceptual Design of a Multi-Rotor Unmanned Aerial Vehicle based on an Axiomatic Design

  • Yoo, Dong-Wan;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.126-130
    • /
    • 2010
  • This paper presents the conceptual design of a multi-rotor unmanned aerial vehicle (UAV) based on an axiomatic design. In most aerial vehicle design approaches, design configurations are affected by past and current design tendencies as well as an engineer's preferences. In order to design a systematic design framework and provide fruitful design configurations for a new type of rotorcraft, the axiomatic design theory is applied to the conceptual design process. Axiomatic design is a design methodology of a system that uses two design axioms by applying matrix methods to systematically analyze the transformation of customer needs into functional requirements (FRs), design parameters (DPs), and process variables. This paper deals with two conceptual rotary wing UAV designs, and the evaluations of tri-rotor and quad-rotor UAVs with proposed axiomatic approach. In this design methodology, design configurations are mainly affected by the selection of FRs, constraints, and DPs.

Automatic Control for Chase Aircraft

  • Yamasaki, Takeshi;Enomoto, Keisuke;Tanaka, Daiki;Tanaka, Daiki;Baba, Yoriaki
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • Many kinds of unmanned aerial vehicles (UAVs) have been developed for a few decades and some of them are now in operational use. Although each UAV as well as a piloted aircraft might have restrictions to execute some tasks simultaneously or to carry some payloads, one with an automatic chase aircraft might have the potential of multi-capabilities to conduct a variety of missions or to carry more storages. This paper introduces a chase UAV control system to enhance a leader (reference) aircraft capability which has storage restriction. The automatic chase guidance and control system will be introduced with the pure pursuit guidance law combined with relative velocity error corrections, and a dynamic inversion technique in order to generate the guidance forces.

Multi-UAV Formation Based on Feedback Linearization Technique Using Range-Only Measurement (거리 정보를 이용한 되먹음 선형화 기법 무인기 편대 비행제어)

  • Kim, Sung-Hwan;Ryoo, Chang-Kyung;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • This paper addresses how to make a formation of multiple unmanned aerial vehicles (UAVs) using only the relative range information. Since the relative range can easily be measured by an on-board range sensor like the laser range finder, the proposed method does not require any expensive and heavy wireless communication system to share the navigation information of each vehicle. Based on the two-dimensional (2-D) nonlinear equations of motion, we propose a nonlinear formation controller using the typical input-output feedback linearization method. The performance of the proposed formation controller is verified by various numerical simulations.