• Title/Summary/Keyword: multi variable control

Search Result 293, Processing Time 0.025 seconds

An application study of the optimal multi-variable structure control to the state space model of the robot system (로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

Multi-variable Fuzzy Modeling for Combustion Control of Refuse Incineration Plant (쓰레기 소각 플랜트 연소 제어를 위한 다변수 퍼지 모델링)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Ahn, Ihn-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.191-197
    • /
    • 2009
  • In this paper, multi-variable fuzzy model for efficient combustion control of refuse incineration plant is obtained. First, to obtain model of incineration plant which is complex and nonlinear multi-variable fuzzy modeling is performed. Obtained multi-variable fuzzy model predicts outputs of incinerator almost exactly. Then using multi-variable fuzzy model we can build simulator which is used as operation simulator for building of control strategy and training of operator.

  • PDF

A VSR $\bar{X}$ Chart with Multi-state VSS and 2-state VSI Scheme

  • Lee, Jae-Heon;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.252-264
    • /
    • 2004
  • Variable sampling Interval (VSI) control charts vary the sampling interval according to value of the control statistic while the sample size is fixed. It is known that control charts with 2-state VSI scheme, which uses only two sampling intervals, give good statistical properties. Variable sample size (VSS) control charts vary the sample size according to value of the control statistic while the sampling interval is fixed. In the VSS scheme no optimal results are known for the number of sample sizes. It is also known that the variable sampling rate (VSR) $\bar{X}$ control chart with 2-state VSS and 2-state VSI scheme leads to large improvements In performance over the fixed sampling rate (FSR) $\bar{X}$ chart, but the optimal number of states for sample size Is not known. In this paper, the VSR Χ charts with multi-state VSS and 2-state VSI scheme are designed and compared to 2-state VSS and 2-state VSI scheme. The multi-state VSS scheme is considered to, achieve an additional improvement by switching from the 2-state VSS scheme. On the other hand, the multi-state VSI scheme is not considered because the 2-state scheme is known to be optimal. The 3-state VSS scheme improves substantially the sensitivity of the $\bar{X}$ chart especially for small and moderate mean shifts.

Design of Variable Gain Amplifier with a Gain Slope Controller in Multi-standard System (다중 표준 시스템을 위한 이득 곡선 제어기를 가진 가변이득 증폭기 설계)

  • Choi, Moon-Ho;Lee, Won-Young;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.321-328
    • /
    • 2008
  • In this paper, variable gain amplifier(VGA) with a gain slope controller has been proposed and verified by circuit simulations and measurements. The proposed VGA has a gain control, gain slope switch and variable gain range. The input source coupled pair with diode connected load is used for VGA gain stage. The gain slope controller with switch can control VGA gain slope. The proposed VGA is fabricated in $0.18{\mu}m$ CMOS process for multi -standard wireless receiver. The proposed two stage VGA consumes min. 2.0 mW to max. 2.6 mW in gain control range and gives input IP3 of -3.77 dBm and NF of 28.7 dB at 1.8 V power supply under -25 dBm, 1 MHz input. The proposed VGA has 37 dB(-16 dB $\sim$ 21 dB) variable gain range, and 8 dB gain range control per 0.3 V control voltage, and can provide variable gain, positive and negative gain slope control, and gain range control. This VGA characteristics provide design flexibility in multi-standard wireless receiver.

Integration of Current-mode VSFD with Multi-valued Weighting Function

  • Go, H.M.;Takayama, J.;Ohyama, S.;Kobayashi, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.921-926
    • /
    • 2003
  • This paper describes a new type of the spatial filter detector (SFD) with variable and multi-valued weighting function. This SFD called variable spatial filter detector with multi-valued weighting function (VSFDwMWF) uses current-mode circuits for noise resistance and high-resolution weighting values. Total weighting values consist of 7bit, 6-signal bit and 1-sign bit. We fabricate VSFDwMWF chip using Rohm 0.35${\mu}$m CMOS process. VSFDwMWF chip includes two-dimensional 10${\times}$13 photodiode array and current-mode weighting control circuit. Simulation shows the weighting values are varied and multi-valued by external switching operation. The layout of VSFDwMWF chip is shown.

  • PDF

Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

  • Lei Yong-Jun;Wu Hong-Xin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.

A Learning Method of PID Controller by Jacobian in Multi Variable System (다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법)

  • 임윤규;정병묵
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.

Control for Multi-variable in Crane System using Fuzzy Learning Method (퍼지학습법을 이용한 크레인 시스템의 다변수 제어)

  • Lim, Yoon-Kyu;Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.144-150
    • /
    • 1999
  • n active control for the swing of crane systems is very important for increasing the productivity. This article introduces the control for the position and the swing of a crane using the fuzzy learning method. Because the crane is a multi-variable system, learning is done to control both position and swing of the crane. Also the fuzzy control rules are separately acquired with the loading and unloading situation of the crane for more accurate control. The result of simulations shows that the crane is just controlled for a very large swing angle of 1 radian within nearly one cycle.

  • PDF

Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model (상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계)

  • Jeong, Seok-Kwon;Kim, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

Control for crane's swing using fuzzy learning method (퍼지 학습법을 이용한 crane의 과도 진동 제어)

  • 임윤규;정병묵
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.450-453
    • /
    • 1997
  • An active control for the swing of crane systems is very important for increasing the productivity. This article introduces the control for the position and the swing of a crane using the fuzzy learning method. Because the crane is a multi-variable system, learning is done to control both position and swing of the crane. Also the fuzzy control rules are separately acquired with the loading and unloading situation of the crane for more accurate control. The result of simulations shows that the crane is just controlled for a very large swing angle of 1 radian within nearly one cycle.

  • PDF