• 제목/요약/키워드: multi seismic excitation

검색결과 62건 처리시간 0.023초

다중지점 지진하중을 받는 돔 구조물의 지진응답 제어 (Seismic Response Control of Dome Structure Subjected to Multi-Support Earthquake Excitation)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.89-96
    • /
    • 2014
  • Spatial structures as like dome structure have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and effectively control of seismic response of spatial structure subjected to multi-supported excitation. In this study, star dome structure that is subjected to multi-supported excitation was used as an example spatial structure. The response of the star dome structure under multiple support excitation are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. And the application of passive tuned mass damper(TMD) to seismic response control of star dome structures has been investigated. From this numerical analysis, it is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation. And it is reasonable to install TMD to the dominant points of each mode. And it is found that the passive TMD could effectively reduce the seismic responses of dome structure subjected to multi-supported excitation.

다중지점 지진하중에 대한 아치구조물의 지진응답 분석 (Seismic Response of Multi-Supported Spatial Structure under Seismic Excitation)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권4호
    • /
    • pp.57-66
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response for seismic design of spatial structure. Keel arch structure is used as an example structure because it has primary characteristics of spatial structures. In case of spatial structures with different ground condition and time lag, multiple support excitation may be subjected to supports of a keel arch structure. In this study, the response of the keel arch structure under multiple support excitation and with time lag are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic responses of spatial structure under multiple support excitation are different from those of spatial structure under simple excitation. And the seismic response of spatial structure with time lag are different from those of spatial structure without time lag. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation and time lag because the spatial structure supports may be different and very long span. It is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation.

수평이축방향 내진역량시험과 내진성능평가 절차 (Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation)

  • 김재관;김익현;이재호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

상이한 지반조건을 갖는 아치구조물의 지진응답 분석 (Seismic Response of Arch Structure Subjected to Different Ground Motion)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동 (Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation)

  • 선창호;안성민;김익현
    • 한국전산구조공학회논문집
    • /
    • 제32권6호
    • /
    • pp.425-434
    • /
    • 2019
  • 연약지반이 두껍고 다양한 지층으로 구성된 지역에 건설되는 단일형 현장타설말뚝 교량은 다양한 지층을 통해서 단일형 말뚝으로 입력되는 지반운동에 대해서 내진안전성을 확보하는 것이 중요하다. 본 연구에서는 설계지반운동에 부합되는 다수의 인공합성지진을 생성하여 이를 암반의 입력지반으로 하여 지반해석을 수행하여 각 지층에서의 지반가속도이력을 산정하였다. 이 가속도이력을 이용하여 각 지층의 지반을 등가스프링으로 모델화하고, 각 지층에서의 가속도시간이력을 입력지반운동으로 하는 다지점 가진 지진해석을 수행하였다. 연약층의 비선형거동특성으로 입력지반운동의 세기는 크게 증폭되지 않아서 교량은 탄성영역 내에서 거동하였다. 한편, 특정 지층에서 산정된 가속도이력을 모든 지반스프링에 동시에 입력하면 응답이 감소하였다. 따라서, 다지점가진 해석을 수행하지 않으면 이러한 형식의 교량의 내진성능을 과대평가할 수 있다.

다중지점 지진하중을 고려한 대공간구조물의 지진응답 분석 (Seismic Response of Spatial Structure Subjected to Multi-Support Earthquake Load)

  • 김기철;강주원
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.399-407
    • /
    • 2013
  • 장경간의 대공간구조물은 지진하중에 의하여 일반구조물과는 다른 응답특성이 나타나고 있으므로 대공간구조물에 대한 내진설계를 위해서는 대공간구조물의 동적특성 및 지진응답특성에 대한 정확한 분석이 필요하다. 본 논문에서는 예제 구조물로 대공간구조물의 동적특성을 기본적으로 내재하고 있는 장견간의 아치구조물로 선정하여 다중지점 지진하중이 가진되는 대공간구조물의 진동응답 특성을 분석하였다. 다중지점 지진하중은 대공간구조물의 지점 지반조건이 다른 경우 그리고 시간지연을 갖는 지진하중이 가진되는 경우로 하여 수치해석을 수행하였다. 다중지점 지진하중 적용한 경우의 지진응답이 단일 지진하중 적용에 의한 지진응답과 비교하여 경우에 따라서 상이한 지진응답을 나타내고 있다. 따라서 대공간구조물의 경우에 정확한 지진응답 분석 및 적절한 내진설계를 위해서는 다중지점 지진하중을 적용하여 지진응답을 분석하는 것 바람직하다.

Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multi-drum columns

  • Papaloizou, Loizos;Polycarpou, Panayiotis;Komodromos, Petros;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.495-521
    • /
    • 2016
  • Ancient monuments of Greek and Roman classical architecture usually consist of multi-drum columns that are constructed of stone blocks placed on top of each other. Several research studies deal with the seismic behaviour of such structures, since earthquakes are common causes of destruction of such monuments. This paper investigates the effect of multiple earthquakes on the seismic performance of multi-drum columns, through numerical simulations and parametric analyses. The Discrete Element Method and an appropriate contact model have been implemented in a specially developed software application that is able to efficiently perform the necessary simulations in two dimensions. Specifically, various strong ground excitations are used in series for the computation of the collective final deformation of multi-drum columns. In order to calculate this cumulative deformation for a series of ground motions, the individual deformation of the column for each excitation is computed and then used as initial conditions for the next earthquake excitation. Various multi-drum columns with different dimensions are also considered in the analyses in order to examine how the geometric characteristics of columns can affect their seismic sequence behaviour, in combination with the excitation frequency content.

다지점 가진을 고려한 장경간 사장교의 비선형시간이력해석 (Nonlinear Time History Analysis of Long Span Cable-Stayed Bridge Considering Multi-Support Excitation)

  • 김진일;하수복;성대정;김문영;신현목
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.655-662
    • /
    • 2011
  • 본 논문에서는 다지점 가진 시 장대교량에 대한 지진응답해석을 수행하고 설계상의 다양한 요구에 유연하게 대처하기 위해서 다지점 가진 해석에 필요한 비선형시간이력해석 알고리즘(영향계수법)을 제안하고, 이를 신뢰성있는 비선형 유한요소해석 프로그램(RCAHEST)에 추가하였다. 동일한 유한요소모델에 대해 범용 유한요소해석 프로그램 SAP2000의 Multi-support Excitation 기능을 이용하여 연구에서의 결과에 대한 비교 검증을 수행하였다. 이 연구결과를 바탕으로 인천대교에 대해서 유한요소모델링을 실시하고 다지점 가진을 고려한 비선형시간이력해석을 수행하였다. 수평변위응답의 분석 결과 시간지연이 늘어날수록 최대 수평변위가 줄어드는 것을 확인할 수 있었다. 또한 입력지진파의 최대가속도를 단계적으로 증가시키며 극한해석을 수행하여 대상 교량의 사용성을 평가하였다.