• 제목/요약/키워드: multi modal control

검색결과 77건 처리시간 0.028초

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

테이블 탑 디스플레이 기반 증강현실 구현을 위한 다중 감각 지원 인터페이스 (Multi-modal Sense based Interface for Augmented Reality in Table Top Display)

  • 정종문;양형정;김선희
    • 한국멀티미디어학회논문지
    • /
    • 제12권5호
    • /
    • pp.708-716
    • /
    • 2009
  • 테이블 탑 디스플레이를 이용하여 만든 응용프로그램은 손을 사용함으로써 사용자에게 직관적인 인터페이스를 제공한다. 따라서 사용자는 테이블 탑 디스플레이에서 보여 지는 가상화면에서 실제 물체를 조정하는 듯한 현실감올 느낄 수 있다. 그러나 대부분의 테이블 탑 디스플레이 응용 증강현실 시스템은 시각적인 감각만을 충족시킨다는 제한사항을 가진다. 본 논문에서는 보다 현실감 있는 증강현실을 제공하기 위해 가상 객체에 충돌이 발생할 경우 객체 컨트롤 장치가 진통하게 함으로써 촉각 부분도 지원하는 다중 감각기반 인터페이스를 제안한다. 제안된 시스템은 에어하키 응용 구현을 통해 시각 및 청각적인 증강현실과 연동하여 가상환경의 충돌 정보를 무선통신으로 전송함으로써 촉각적인 증강현실을 반영함을 보인다. 본 연구에서는 시각지원과 함께 촉각지원을 추가함으로써 증강현실의 현실감을 증대시키고, 손 이외의 다른 장치를 사용하여 테이블 탑 디스플레이의 사용 환경을 확장시켜 보다 실감나는 인터페이스 환경을 제공한다.

  • PDF

항공기 플랩 제어를 위한 선형 구동기의 구조 안전성 평가 (Evaluation of Structural Safety of Linear Actuator for Flap Control of Aircraft)

  • 김동협;김상우
    • 항공우주시스템공학회지
    • /
    • 제13권4호
    • /
    • pp.66-73
    • /
    • 2019
  • 본 연구에서는 항공기 플랩 제어를 위한 선형 구동기의 기본 설계에 대한 구조 안전성을 평가하였다. 다물체 동역학 분석을 통해 선형 구동기의 기계적 운동을 이해하였고, 접촉 하중을 산출하여 유한요소해석 기반의 구조 분석에 적용하였다. 구조 분석에서는 선형 구동기의 설계 속도 조건에 대한 열, 정적 거동을 검토하였고, 구조적 안전성을 평가하였다. 또한 모드 해석을 수행하여 동적 거동을 분석하였다. 분석 결과, 모터가 225 rpm으로 작동 시 구동 로드는 약 5 mm/s로 병진 운동하였고, 기어 간 최대 32.83 N의 접촉 하중이 발생하였다. 한편, 최대 열 응력과 정 응력은 철의 항복강도의 약 1.57%, 78%로 발생하였고, 각 부품은 서로의 공진 주파수를 회피하였다. 따라서 제안된 선형 구동기의 기본설계는 구조적으로 안전하며, 공진에 대해 안정적임을 밝혔다.

광섬유 센서를 이용한 평판의 진동 감지 및 제어 (Vibration Sensing and Control of a Plate Using Optical Fiber Sensor)

  • 김도형;한재흥;양승만;김대현;이인;김천곤;홍창선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.459-464
    • /
    • 2001
  • Vibration control of a plate using an optical fiber sensor and a PZT actuator is considered in this study. An aluminum plate with attached Extrinsic Fabry-Perot Interferometer (EFPI) and PZT actuator is prepared for experimental investigation. Vibration level of EFPI that can represent the mechanical strain without severe distortion is validated by forced vibration experiment. A numerical model of the plate is constructed based on the experimentally obtained frequency responses, and an optimal controller is designed for the multi-modal vibration suppression. It is found that the vibration level of the first three modes can be greatly reduced. The effect of low-pass filtering used to eliminate high frequency noise on the stability and control performance is also considered.

  • PDF

Optimality criteria based seismic design of multiple tuned-mass-dampers for the control of 3D irregular buildings

  • Daniel, Yael;Lavan, Oren
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.77-100
    • /
    • 2015
  • Multiple tuned mass dampers (MTMDs) tuned to various frequencies have been shown to efficiently control the seismic response of structures where multiple modes are dominant. One example is irregular structures that are found more vulnerable than their symmetric counterparts. With the technology of MTMDs available, design and optimal design methodologies are required for application. Such a methodology, in the form of an analysis/redesign (A/R) scheme, has been previously presented by the authors while limiting responses of interest to allowable values, i.e., performance-based design (PBD). In this paper, the A/R procedure is modified based on formal optimality criteria, making it more cost efficient, as well as more computationally efficient. It is shown that by using the methodology presented herein, a desired performance level is successfully targeted by adding near-optimal amounts of mass at various locations and tuning the TMDs to dampen several of the structure's frequencies. This is done using analysis tools only.

MFC 작동기가 부착된 실린더 쉘 구조물의 동적 모델링과 능동진동제어기 설계 및 실험 (Dynamic Modeling, Active Vibration Controller Design and Experiments For Cylindrical Shell equipped with MFC Actuators)

  • 곽문규;정문산
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.565-573
    • /
    • 2007
  • This paper is concerned with the dynamic modeling, active vibration controller design and experiments for a cylindrical shell equipped with MFC actuators. The dynamic model was derived by using Rayleigh-Ritz method based on Donnel-Mushtari shell theory. The actuator and sensors for the MFC actuator equations were derived based on pin-force model. The equations of motion were then reduced to modal equations of motion by considering the modes of interest. The sensor equations were also converted to a reduced form. An aluminum shell was fabricated to demonstrate the effectiveness of modeling and control techniques. The boundary conditions at both ends of the shell were assumed to be shear diaphragm. Theoretical natural frequencies were calculated and compared to experimental result. It was observed that the theoretical result is in good agreement with experimental result for the first two modes. The multi-input and multi-output positive position feedback controller, which can cope with first two modes, was then designed based on the blockinverse theory and implemented using DSP. It was found from experiment that vibrations can be successfully suppressed.

  • PDF

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

몰입형 가상교육을 위한 멀티모달 인터페이스 제어모듈 (Multimodal Interface Control Module for Immersive Virtual Education)

  • 이재협;임성민
    • 한국실천공학교육학회논문지
    • /
    • 제5권1호
    • /
    • pp.40-44
    • /
    • 2013
  • 본 연구에서는 학습자가 가상공간 내에서 교육 컨텐츠를 자연스럽게 조작할 수 있는 멀티모달 인터페이스 제어모듈을 제시한다. 제안하는 모듈은 사용자가 가상공간과 인터랙션을 할 때 사용자의 모션을 인식하고 인식된 정보를 무선통신을 통하여 가상공간으로 전달한다. 제안하는 입력장치는 햅틱 액츄에이터를 탑재하고 있어 교육 컨텐츠와 사용자의 인터랙션에 따른 햅틱 감각을 생성하여 사용자가 교육용 컨텐츠들을 쉽게 조작할 수 있게 해 준다.

  • PDF

멀티모달 정보변환을 통한 시각장애우 보행 보조 시스템 (Walking Assistance System for Sight Impaired People Based on a Multimodal Information Transformation Technique)

  • 유재형;한영준;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.465-472
    • /
    • 2009
  • This paper proposes a multimodal information transformation system that converts the image information to the voice information to provide the sight impaired people with walking area and obstacles, which are extracted by an acquired image from a single CCD camera. Using a chain-code line detection algorithm, the walking area is found from the vanishing point and boundary of a sidewalk on the edge image. And obstacles are detected by Gabor filter of extracting vertical lines on the walking area. The proposed system expresses the voice information of pre-defined sentences, consisting of template words which mean walking area and obstacles. The multi-modal information transformation system serves the useful voice information to the sight impaired that intend to reach their destination. The experiments of the proposed algorithm has been implemented on the indoor and outdoor environments, and verified its superiority to exactly provide walking parameters sentences.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.