• Title/Summary/Keyword: multi layer neural network

Search Result 516, Processing Time 0.027 seconds

A multi-modal neural network using Chebyschev polynomials

  • Ikuo Yoshihara;Tomoyuki Nakagawa;Moritoshi Yasunaga;Abe, Ken-ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.250-253
    • /
    • 1998
  • This paper presents a multi-modal neural network composed of a preprocessing module and a multi-layer neural network module in order to enhance the nonlinear characteristics of neural network. The former module is based on spectral method using Chebyschev polynomials and transforms input data into spectra. The latter module identifies the system using the spectra generated by the preprocessing module. The omnibus numerical experiments show that the method is applicable to many a nonlinear dynamic system in the real world, and that preprocessing using Chebyschev polynomials reduces the number of neurons required for the multi-layer neural network.

  • PDF

A Control Method using the modified Elman Neural Network (변형된 Elman 신경회로망을 이용한 제어방식)

  • 최우승;김주동
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.67-72
    • /
    • 1999
  • The neural network is a static network that consists of a number of layer: input layer, output layer and one or more hidden layer connected in a feed forward way. The popularity of neural network appear to be its ability of learning and approximation capability. The Elman Neural Network proposed the J. Elman. is a type of recurrent network. Is has the feedback links from hidden layer to context layer. So Elman Neural Network is the better performance than the neural network. In this paper. we propose the Modified Elman Neural Network. The structure of a MENN is based on the basic ENN. The recurrency of the network is due to the feedback links from the output layer and the hidden layer to the context layer. In order to certify the usefulness or the proposed method. the MENN apply to the multi target system. Simulation shows that the proposed MENN method is better performance than the multi layer neural network and ENN.

Modular Neural Network Using Recurrent Neural Network (궤환 신경회로망을 사용한 모듈라 네트워크)

  • 최우경;김성주;서재용;전흥태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1565-1568
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with multi-layer neural network. The structure of modular neural network in researched by Jacobs and Jordan is selected in this paper. Modular network consists of several expert networks and a gating network which is composed of single-layer neural network or multi-layer neural network. We propose modular network structure using recurrent neural network, since the state of the whole network at a particular time depends on an aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

Recurrent Based Modular Neural Network

  • Yon, Jung-Heum;Park, Woo-Kyung;Kim, Yong-Min;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.694-697
    • /
    • 2003
  • In this paper, we propose modular network to solve difficult and complex problems that are seldom solved with Multi-Layer Neural Network(MLNN). The structure of Modular Neural Network(MNN) in researched by Jacobs and jordan is selected in this paper. Modular network consists of several Expert Networks(EN) and a Gating Network(CN) which is composed of single-layer neural network(SLNN) or multi-layer neural network. We propose modular network structure using Recurrent Neural Network(RNN), since the state of the whole network at a particular time depends on aggregate of previous states as well as on the current input. Finally, we show excellence of the proposed network compared with modular network.

  • PDF

A Terminal Ballistic Performance Prediction of Multi-Layer Armor with Neural Network (신경회로망을 이용한 다층장갑의 방호성능 예측)

  • 유요한;김태정;양동열
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.189-201
    • /
    • 2001
  • For a design of multi-layer armor, the extensive full scale or sub-scale penetration test data are required. In generally, the collection of penetration data is in need of time-consuming and expensive processes. However, the application of numerical or analytical method is very limited due to poor understanding about penetration mechanics. In this paper, we have developed a neural network analyzer which can be used as a design tool for a new armor. Calculation results show that the developed neural network analyzer can predict relatively exact penetration depth of a new armor through the effective analysis of the pre-existing penetration database.

  • PDF

The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network (균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구)

  • 김성곤;김환용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.113-123
    • /
    • 2003
  • Many researches on the application of neural networks for making financial index prediction have proven their advantages over statistical and other methods. In this paper, a neural network model is proposed for the Buying, Holding or Selling timing prediction in stocks by the price index of stocks by inputting the closing price and volume of dealing in stocks and the technical indexes(MACD, Psychological Line). This model has an equalized multi-layer arithmetic function as well as the time series prediction function of backpropagation neural network algorithm. In the case that the numbers of learning data are unbalanced among the three categories (Buying, Holding or Selling), the neural network with conventional method has the problem that it tries to improve only the prediction accuracy of the most dominant category. Therefore, this paper, after describing the structure, working and learning algorithm of the neural network, shows the equalized multi-layer arithmetic method controlling the numbers of learning data by using information about the importance of each category for improving prediction accuracy of other category. Experimental results show that the financial index prediction using the equalized multi-layer arithmetic neural network has much higher correctness rate than the other conventional models.

  • PDF

Position Control of a One-Link Flexible Arm Using Multi-Layer Neural Network (다층 신경회로망을 이용한 유연성 로보트팔의 위치제어)

  • 김병섭;심귀보;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.58-66
    • /
    • 1992
  • This paper proposes a neuro-controller for position control of one-link flexible robot arm. Basically the controller consists of a multi-layer neural network and a conventional PD controller. Two controller are parallelly connected. Neural network is traind by the conventional error back propagation learning rules. During learning period, the weights of neural network are adjusted to minimize the position error between the desired hub angle and the actual one. Finally the effectiveness of the proposed approach will be demonstrated by computer simulation.

  • PDF

Boundary estimation in electrical impedance tomography with multi-layer neural networks

  • Kim, Jae-Hyoung;Jeon, Hae-Jin;Choi, Bong-Yeol;Lee, Seung-Ha;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.40-45
    • /
    • 2004
  • This work presents a boundary estimation approach in electrical impedance imaging for binary-mixture fields based on a parallel structured multi-layer neural network. The interfacial boundaries are expressed with the truncated Fourier series and the unknown Fourier coefficients are estimated with the parallel structure of multi-layer neural network. Results from numerical experiments shows that the proposed approach is insensitive to the measurement noise and has a strong possibility in the visualization of binary mixtures for a real time monitoring.

  • PDF

A Study on Development of Long-Term Runoff Model for Water Resources Planning and Management (수자원의 이용계획을 위한 장기유출모형의 개발에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.3
    • /
    • pp.61-68
    • /
    • 2013
  • Long-term runoff model can be used to establish the effective plan of water reources allocation and the determination of the storage capacity of reservoir. So this study aims at the development of monthly runoff model using artificial neural network technique. For this, it was selected multi-layer neural network(MLN) and radial basis function neural network(RFN) model. In this study, it was applied model to analysis monthly runoff process at the Wi stream basin in Nakdong river which is representative experimental river basin of IHP. For this, multi-layer neural network model tried to construct input 3, hidden 7, and output 1 for each number of layer. As the result of analysis of monthly runoff process using models connected with artificial neural network technique, it showed that these models were effective in the simulation of monthly runoff.

Enhanced Fuzzy Multi-Layer Perceptron

  • Kim, Kwang-Baek;Park, Choong-Sik;Abhjit Pandya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.1-5
    • /
    • 2004
  • In this paper, we propose a novel approach for evolving the architecture of a multi-layer neural network. Our method uses combined ART1 algorithm and Max-Min neural network to self-generate nodes in the hidden layer. We have applied the. proposed method to the problem of recognizing ID number in student identity cards. Experimental results with a real database show that the proposed method has better performance than a conventional neural network.

  • PDF