• Title/Summary/Keyword: multi forming

Search Result 506, Processing Time 0.024 seconds

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

Infrared and Radio observations of a small group of protostellar objects in the molecular core, L1251-C

  • Kim, Jungha;Lee, Jeong-Eun;Choi, Minho;Bourke, Tyler L.;Evans II, Neal J.;Di Francesco, James;Cieza, Lucas A.;Dunham, Michael M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.67.4-68
    • /
    • 2015
  • We present a multi-wavelength observational study of a low-mass star-forming region, L1251-C, with observational results at wavelengths from the near-infrared to the millimeter. Spitzer Space Telescope observations confirmed that IRAS 22343+7501 is a small group of protostellar objects. The extended emission to east-west direction with its intensity peak at the center of L1251A has been detected at 350 and 850 mm with the CSO and JCMT telescopes, tracing dense envelope materials around L1251A. The single-dish data from the KVN and TRAO telescopes show inconsistencies between the intensity peaks of several molecular line emission and that of the continuum emission, suggesting complex distributions of molecular abundances around L1251A. The SMA interferometer data, however, show intensity peaks of CO 2-1 and $^{13}CO$ 2-1 located at the position of IRS 1, which is both the brightest source in IRAC image and the weakest source in the 1.3 mm dust continuum map. IRS 1 is the strongest candidate for being the driving source of a newly detected the compact CO 2-1 outflow. Over the whole region ($14^{\prime}{\times}14^{\prime}$) of L125l-C, 3 Class I and 16 Class II sources have been detected, including three YSOs in L1251A. A comparison with the average projected distance among 19 YSOs in L1251-C and that among 3 YSOs in L1251A suggests L1251-C is an example of low-mass cluster formation, where protostellar objects are forming in a small group.

  • PDF

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.

Band-Broadening Design of the Butler Matrix for V2X - 5.9 GHz Communication (V2X 차량 통신용 5.9 GHz 버틀러 매트릭스의 광대역화 설계)

  • Han, Dajung;Lee, Changhyeong;Park, Heejun;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.107-113
    • /
    • 2016
  • In this paper, we suggest a design method of a wide-band Butler matrix working at 5.9 GHz for V2X communication antennas. Since V2X communication needs beam-forming and beam-steering antennas to make transportation systems, mobile comm platforms, saturated frequency-resources, and signal TX-and-RX smart, multi-functional, resolved, and efficient utmost, respectively, the proper Butler matrix and its radiating elements as a low-profile geometry are realized. The constitutive components of the basic Butler matrix of a narrow band are designed first. And then, it is extended to a wide-band version to make its frequency-shift less affected by the event of the antenna system being mounted on a car body. The beam-forming and beam-steering performance is presented as the common feature tagged along with the different bandwidths of the frequency responses as the comparison between the narrow- and wide-band cases.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.

Fabrication of Piezoelectric Micro Bending Actuators Using Sol-Gel Thick PZT films

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kang, Sung-Goon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.1-4
    • /
    • 2004
  • Fabrication and electrical and mechanical properties of piezoelectric micro bending actuators (PMBA) using sol-gel-multi-coated thick PZT films and MEMS processes were investigated. PMBA could be used for design and fabrication of micro fluidic devices, for example, micro-pumps, micro dispensers, and so on. PMBA were fabricated using 2 um thick PZT films on Pt (350 nm)/$SiO_2$ (500 nm)/Si ($300\mu\textrm{m}$) substrates and MEMS processes. 7 types of PMBA were fabricated with areas of silicon diaphragms, PZT films and top electrodes. When the sizes of silicon diaphragms, PZT films and Pt top electrodes were reduced from 3000$\times$$1389\mu\textrm{m}$, 4000$\times$$1000\mu\textrm{m}$ and 4000$\times$$900\mu\textrm{m}$ down to 14%, 14% and 11 % of them, respectively, the center displacements of PMBA were decreased from 0.68 um to 0.10 um at 5 Hz and 12 Vpp. So, PMBA with large areas showed larger displacements than PMBA with small areas and experimental results were also good agreement with the plate and shell theory.

  • PDF

Occupational Health Care Management Model in Small Scale Enterprises (소규모 사업장 보건관리 모델개발에 관한 연구)

  • Yun, Soon-Nyung;Jung, Hye-Sun
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.3
    • /
    • pp.647-660
    • /
    • 2001
  • Forming health care management model in small-scale enterprises was the purpose of this study. For the purpose, we tried to investigate the characteristics of small-scale enterprises and analyzed the pattern of their health care management. The results are as follow: 1. The strength of health managing agency and technical supporting program lies in team approach by specialized manpower. However, if the liaison between each part of the organization is not smooth, the overall management will be very difficult. 2. Small scale enterprises are characterized by their short life after the establishment, use of rental building, lack of welfare facilities, weakness in sanitary management and aggregation of factories of similar type of industry. Because of these characteristics, it is very difficult to solve problem basically, such as improvement of working environment. Therefore, it is important to focus on health education and community based approach. 3. Many workers in small-scale factories are in middle and old age. They have health problems mainly related to personal habits. Implementation of an appropriate health promotion program is needed. 4. The number of workplaces, which should be managed by health managing agent. is increasing rapidly. But the number of health managing agent is limited. In the aspect of the requirement of manpower and equipment, training personal agent is more urgent than founding institutional agent. 5. The uniform method of health management hampers the choice of employer and workers. The types of provision of health management should be diversified. 6. For an efficient management, a frequent visit of personal agent and the following referral to a specialist should be done. The specialists in charge of secondary management are from the field of occupational medicine, occupational hygiene, ergonomics, etc. 7. The health management of small-scale facilities should have six components. They are community-based approach, multi-disciplinary cooperative system, program based on the need of recipient, forming partnership of employer and worker, change of lifestyle, and evidence-based program.

  • PDF

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials (건축공학분야에서 탄산칼슘형성세균의 응용과 전망)

  • Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing (온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구)

  • Lee, Y.S.;Lee, K.S.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.