• Title/Summary/Keyword: mullite

Search Result 305, Processing Time 0.024 seconds

Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash (석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조)

  • Kim, Won-Young;Ji, Hyung-Bin;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

Mineral compositions of the heated coal fly ash (석탄회의 가열에 따른 광물조성 변화)

  • 한경섭;송종택;윤성대;안민선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.175-180
    • /
    • 1995
  • In order to clarify the part of thermal properties of coal fly ash, the change of mineral compositions of the heated coal fly ash was investigated by XRD, TG - DTA and SEM. It was found that the mineral composition of coal fly ash was quartz, mullite and glassy phase ( a b. 20 ~ 25 wt % ), and had no difference in the range of 105 to $1000^{\circ}C $. Only in the case of Ansan coal fly ash, calcite was detected besides the crystalline of quartz and mullite. And anorthite was produced by the reaction between thermal- decomposed calcite, quartz and $Al_2O_3$component in the glassy phase at $1200^{\circ}C $.

  • PDF

Low Temperature Sintering Additives for Mullite Ceramics (뮬라이트 세라믹스의 저온 소결을 위한 첨가제)

  • Lim, Chang-Bin;Yeo, Dong-Hun;Shin, Hyo-Soon;Cho, Yong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.604-609
    • /
    • 2011
  • Additives for low temperature sintering of mullite ceramics were investigated for matching Mo-Cu conducting paste with that ceramics at 1,400$^{\circ}C$. $SiO_2$, MgO and $Y_2O_3$ were chosen as the additives for low temperature sintering, and the amounts of those additives were varied with sintering temperature of 1,400$^{\circ}C$ to 1,500$^{\circ}C$. With additives of 1.0 wt% of $SiO_2$, 1.0 wt% of MgO, and 1.5 wt% of $Y_2O_3$, the densest sintered body of 3.12 g/$cm^3$ was obtained at 1,400$^{\circ}C$ in reducing atmosphere. The flexural strength of that was 325 MPa and the CTE (Coefficient of thermal expansion) was 4.33 ppm/$^{\circ}C$.

The scientific analysis of potteries-Focus on the potteries excavated from kiln sites at Chungcheong Nam∙Buk-do and Gangwon-do (도.토기의 과학적 분석 연구-충청 남.북도, 강원도 토기 도요지 중심으로)

  • Hong, Jeong-Uk;Han, Min-Su;Hwang, Jin-Ju;Gang, Dae-Il
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.99-130
    • /
    • 2003
  • This research carried out composition analysis the subject of potteries from kiln site at Gangwon-do, Chungcheong Nam∙Buk-do and the followings are the results. Firstly, XRD analysis results showed that soft potteries were consisted of $\alpha$-quartz, feldspar and soil minerals while hard potteries were consisted of high temperature crystals like mullite, tridymite and cristobalite. Secondly, the firing temperatures of the soft potteries were determined using XRD analysis. It ranged from $550^{\circ}C$ to $870^{\circ}C$.While the firing temperatures of the hard potteries were divided into 3 groups; Group Ⅰ: Potteries with Mullite and Feldspar - ranged from $1000^{\circ}C$ to$1200^{\circ}C$. Group II : Potteries with Mullite and Tridymite - ranged from $875^{\circ}C$ to $1200^{\circ}C$. Group III : Potteries with Cristobalite - ranged above $1200^{\circ}C$.Thirdly, the result of correlation analysis using trace element such asSc, Rb of the potteries form Gangwon do and Chungcheong Nam.Bukdokilns allowed us to divide the area with their own characteristics into 4-groups. Using the same result, kilns sited at Chungcheong Nam.Buk-do were classified into 3-groups.

  • PDF

Pressure Filtration of Zr(Y,Ce)$O_2$ TZP/Mullite Suspensions for the Preparations of Functionally Gradient Materials with Multi-layer (다층 경사기능재료의 제조를 위한 Zr(Y,Ce)$O_2$ TZP/Mullite 현탁액의 가압여과)

  • 이상진;박상희;박홍채;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.693-699
    • /
    • 2000
  • Casting behavior of Zr(Y,Ce)O2 TZP/Mullite suspension during pressure filtration was investigated to prepare multi-layered Functionally Gradient Materials(FGM). The dispersion stabilities of each layer suspension were investigated by examination of zeta potential and viscosity. The each suspensions with 20 vol.% solid loading and 100 첸 of viscosity was prepared after fix of the dispersing agent (Sodium hexa-meta phosphate) and the binder (Hydroxyethyl cellulose), and then the cakes were formed at the 2.5 MPa~10.0MPa pressure range. The cake thickness of all suspensions was increased with the square root of time at the constant pressure, and the relations between filtration pressure(P)a nd dehydration rate (Q=dh/dt) showed that the flows of filtrates in the consolidated layers were laminar. The permeabilities were nearly constant during filtration, and kozeny constants(Kc) of the suspensions were 4.8~6.7. These valumes were seen as close to 5, which might be homogeneous particle packing during filtration. On the basis of those data, the multi layered compaction with 9 mm thickness and 52.5% green density was prepared by continuous pressure filtration.

  • PDF

A Study on the Sinterability of MgO-Al2O3-SiO2 System Ceramic Powders Prepared by Spray Pyrolysis Method (분무열분해법으로 제조한 MgO-Al2O3-SiO2계 화합물분체의 소결성)

  • 박정현;박찬욱;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.347-360
    • /
    • 1989
  • Spinel, mullite, forsterite and cordierite composition powders were synthesized from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and SiCl4-ethanol solution by spray pyrolysis method and the sinterability of these powders were investigated. The bulk density of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr was 3.56g/㎤(99.5% relative density) and 3.16g/㎤(99.7% relative density), respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The bulk density of forsterite and cordierite specimens sintered at 1,480 and 1,40$0^{\circ}C$ for 2hrs were 3.217 and 2.155g/㎤, respectively. (Green compacts were made from powders prepared at 1,00$0^{\circ}C$). The constituent compositions of spinel and mullite specimens sintered at 1,$700^{\circ}C$ for 1hr were 27.5wt% MgO and 70.5wt% Al2O3, respectively. Vickers microhardness and fracture toughness of spinel sintered at the above condition were 13.7GPa and 2.6MN.m3/2, respectively, and room temperature bending strength, 425MPa, was nearly maintained even at the elevated temperature. In the case ofmullite specimens, those values were 13.5GPa, 2.2MN/m3/2 and 430MPa, respectively.

  • PDF

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF