• Title/Summary/Keyword: mud

Search Result 1,120, Processing Time 0.025 seconds

An Experimental Study on the Adsorption rates of Heavy Metals by Yellow Loess, Tidal Plat Sediment and Mud (황토, 갯벌 및 머드의 중금속 흡착율에 관한 실험적 연구)

  • Lee I.S.;Lee M.Y.;Lee T.J.;Kim H.J.;Lee B.C.;Jeong M.S.;Bang E.O.;Song H.S.;Hwang H.K.;Lee J.H.;Cho Y.C.
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.15-22
    • /
    • 2004
  • Yellow loess, Tidal plat sediment, and mud are blown to be high in adsorption though they have great distinction according to the ratio of clay minerals content and their kinds. Thus one of the samples for this study can be obtained by drying of Yellow loess, Tidal plat sediment, and the mud which is semifinished products that are from the progress of heat treatment and making homogeneity which can be found everywhere in our county. Another sample can be prepared by reducing pollutants with the adsorbent and by homing heavy metals of their on. With the samples, noxious heavy metals such as Pb, Cd, and essential trace elements such as Cu, Fe, Mn by each concentration is tested for adsorption according to pH, the kinds of adsorbents and the amount of injection. With the help of these steps, this study shows that the adsorbents, which are green, reducing the additional pollution and low in price, can be found. It also shows that the optimal condition for removing pollutants can be found and the basic materials for treating water can be offered. The results were as follows ; Yellow loess shows the rates of adsorption by more than 50% and Tidal plat sediment and Mud show it by more than 90%. Thus Tidal plat sediment and Mud are higher than Yellow loess the rates of adsorption. The pH should be treated in natural condition because the rates of adsorption of Pb, Cd, Cu, Mn excepting Fe in mud is higher in pH 7 than in pH 3 of Yellow loess, Tidal plat sediment, and Mud. The drying adsorbents are good to use because the rates of adsorption of heavy metals has tendency to be higher in the drying method than in the burning method. It is considered that the more the mont of the injection of the adsorbent is , the higher the rates of adsorption is, and one gram is reasonable for the amount of the injection of Tidal plat sediment and mud. Yellow loess is suitable for the treatment of the water that includes low concentration of heavy metals because it has the lower rate of adsorption as the concentration of noxious heavy metals is higher. It is thought that Tidal plat sediment and Mud is proper for the treatment of the water that includes high concentration of heavy metals because the rates of adsorption has not been changed as the concentration of heavy metals increases.

Long-term Changes of Sediment and Topography at the Southern Kanghwa Tidal Flat, West Coast of Korea (한국 서해안 강화 남부 갯벌 퇴적물 및 지형의 장기적인 변화)

  • Woo, Han Jun
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.493-500
    • /
    • 2013
  • Comparisons of surface sediment distributions in summer 1997 and 2011 and elevations on the tidal flats in April 1998 and March 2013 had been used for understanding the long-term changes of sedimentary environments at southern Kanghwa tidal flat, west coast of Korea. The mud sediments dominated in the eastern part and sandy mud sediments dominated in the western part of the tidal flat in 1997. In 2011, the surface sediments were dominant mud and sandy mud at Sunduri and Tonggum in the eastern part, sandy mud at Tongmakri in the middle part, and sand and muddy sand at Yeochari and Changhwari tidal flats in the western part. The area of mud sediments had decreased, but that of sand-mud mixed sediments extended to eastward tidal flat for 14 years. The long-term topographic changes showed that deposition occurred at Tongmakri and Yeochari and erosion occurred at Changhwari tidal flat during 15 years. These changes should be effected the local hydrodynamic changes by several constructions near the tidal flat since the 1990s.

Characteristics of Soil Pavement by Red Mud Content and Binder Type (레드머드 대체율에 따른 결합재별 흙포장재의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Jae-Hwan;Kim, Byeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. The development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, water absorption and efflorescence of alkali-activated slag-red mud soil pavement according to binder type. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the redmud content increased.

Study on recovery of heavy metals from red mud by using the ultrasonic waves (초음파를 이용한 레드머드로부터 유가금속 회수에 관한 연구)

  • Lim, Ki-Hyuk;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.906-913
    • /
    • 2015
  • The red mud generated from the Bayer alumina production process seriously threatens the environment and human safety. Therefore, the reduction and recycling of red mud is an urgent topic in the aluminum industry. In this study, the effects of four parameters, ultrasound power, reaction temperature, time, and acid concentration, on the leaching of Fe, Al from red mud was investigated. The major parameters influencing the metal recovery efficiency from red mud were ultrasound power and reaction temperature. The use of ultrasonic irradiation resulted in 1.72 and 1.28 times higher recovery efficiency for Fe and Al, respectively. The proper conditions for the recovery of the metal components present in the red mud is the ultrasound intensity (150 W), sulfuric acid concentration (4-6N), reaction temperature ($70^{\circ}C$), and reaction time (2 hours), etc.

ENVIRONMENT IN THE OYSTER FARM AREA -Superficial Mud Characteristics Near Chungmu- (굴 양식장의 환경에 관한 연구 충무부근 양식장의 저질에 관하여)

  • CHO Chang Hwan;KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.243-247
    • /
    • 1978
  • COD and sulphide contents in the superficial mud in three oyster farms, one near Gajo-do in Chinhae Bay, the second near Eup-do in Koseong Bay and the third near Eogu in Keoje Bay, around the Chungmu area have been monthly determined for seven months from May through November in 1978. Bottom water was also checked for chlorophyll-a, dissolved oxygen, COD and sulphide. In general, large amounts of COD and sulphide in the superficial mud were found in the summer season, COD was 38.1 mg/g dry mud in the farm near Gajo-do, 32.3 mg/g near Eup-do and 25.1 mg/g in Eogu farm and sulphide was 0.313 mg/g dry mud, 0.517 mg/g and 0.132 mg/g respectively. COD and sulphide contents in the farms near Gajo-do and Eup-do were a little over the upper level of the eutrophic range, that is, 30 mg/g dry mud in COD and 0.3 mg/g dry mud in sulphide. It shows that the above two oyster farms were already eutrophicated. However, among three oyster farms no clear difference in bottom water was found.

  • PDF

An Analysis of Micro-landform and Its Grain Size of Tidal Flat in Gomso-Bay using Satellite Remote Sensing (위성원격탐사를 이용한 곰소만 간석지의 미지형과 퇴적물 입도특성 분석)

  • Jo, Wha-Rhong;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.44-56
    • /
    • 2000
  • Through the ISODATA method of unsupervised classification, the micro-landform of Gomso-Bay tidal flat was classified into mud, mixed, and sand flats by using Landsat TM image. Each tidal flat shows on apparent differences in its topographical characteristics and grain size compositions. Mud flat is occupied the innermost part of the tidal flat. Sand flat is distributed adjacent to the entrance of the bay, while the mixed one is located in the central part of the bay. Mud flat deposits have fine grain size, more than 4 in average mean phi, bad sorting, more than 1 phi in standard devation, and positive skewness. Mixed and sand flat deposits have coarse grain size, less than 4 average mean phi, good sorting, less than 1 phi in standard daviation, and negative skewness. Topographically, the mud flat consists of flat surfaces and dissected channels. The average depth of dissected channels is about 2 meters. Meanwhile, sand flat has a very flat landform with well-developed ripple marks of less than 10 centimeters in average relief. And the mixed one shows the intermediate topographical characteristics of those of mud and sand flats.

  • PDF

Enhancement of Interfacial Adhesion of Epoxy/Red Mud Nanocomposites Produced by Acidic Surface Treatment on Red Mud (Red Mud의 산처리에 의한 에폭시/Red Mud 나노복합재료의 계면 결합력 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.587-593
    • /
    • 2001
  • In this work, red mud (RM) was chemically modified by 0.1, 1, and 5 M H3PO4 solution to prepare epoxy/RM nanocomposites. The effect of chemical treatment on pH, acid-base values, specific surface area, and porosity of RM surface was analyzed. To estimate the mechanical interfacial properties of epoxy/RM nanocomposites, the critical stress intensity factor (K$_{IC}$) was measured. From the experimental results, it was clearly revealed that the porosity, specific surface area, and acid values of RM surface were developed as the increase of the treatment concentration due to the increase of acidic functional group, including hydroxyl group on RM surface. The mechanical interfacial properties of epoxy/treated-RM nanocomposites were higher than those of epoxy/RM as-received due to an improvement of interfacial bonding between basic matrix and RM surface.

  • PDF

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition (하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구)

  • Trung Tin Huynh;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

A Fundamental Study about the Applicability of Mud Flat as a Concrete Admixture and Filler (갯벌의 콘크리트용 혼화재 및 채움재로서의 활용가능성에 대한 기초적 연구)

  • Yang, Seong-Hwan;Kang, Yun-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.571-578
    • /
    • 2016
  • Recently, review on viability of various industrial by product and natural materials as raw material for concrete has been actively done in aspect of environment-friendly issue and depletion of natural resource. This study conducted fundamental study on the possibility of utilizing mud flat as admixture and filling material for concrete. First, chemical analysis on the viability of mud flat as admixture was done and the researchers compared it with the substance of fly ash and blast furnace slag. According to the result, substance content was proven to be inadequate. In addition, as the replacement rate of mud flat increased, compressive strength and tensile strength decreased. According to the estimated result of chemical substance analysis, possibility of utilizing mud flat as admixture was low. According to the result of experiment done as filling material, 10% ~ 30% replacement rate of mud flat manifested more than 8 Mpa of compressive strength of block which may be utilized for secondary product. However, additional experiment such as making block is required afterward. According to the result of flow experiment, as the replacement rate of mud flat increased, flow value decreased, and through chloride content analysis test, it was proven that mud flat is inappropriate to be applied as steel beam using structure since it has high content of sodium. It may be utilized as products that does not use steel beam such as internal brick.

Mineral Distribution in the Southeastern Yellow Sea Surface Sediments; KORDI Cruise Samples in 2010 (황해 남동부 표층 해양 퇴적물의 광물 분포; 2010년 한국해양연구원 탐사 시료)

  • Cho, Hyen-Goo;Kim, Soon-Oh;Yi, Hi-Il;Shin, Kyung-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Mineral compositions of 69 southeastern Yellow Sea surface sediments collected at the Korea Ocean Research and Development Institute (KORDI) cruise in 2010, were determined using the quantitative X-ray diffraction analysis. Southeastern Yellow Sea surface sediments are composed of major minerals (quartz 49.1%, plagioclase 13.0% and alkali feldspar 9.3%), clay minerals, calcite, and aragonite. Illite (9.4%) is the most abundant clay mineral, chlorite (4.6%) is the second, and kaolinite (0.8%) is few. Quartz and alkali feldspar contents are high in coarse-grained sediments, whereas amphibole and clay mineral contents are high in fine-grained sediments. Quartz, plagioclase, alkali feldspar, chlorite, and kaolinite contents are higher, and illite content is lower in mud zone 1 corresponding to south margin of Central Yellow Sea Mud than in mud zone 2, a part of Southeastern Yellow Sea Mud. Difference of mineral composition between two mud zone suggests that source of fine sediment may be different in two mud zone and Southeastern Yellow Sea Mud might be largely supplied from the Keum and Youngsan rivers in southern part of the west coast in the Korean Peninsula.