• 제목/요약/키워드: mtDNA introgression

검색결과 8건 처리시간 0.03초

한국 동해안에서 서식하는 진주담치(Mytilus edulis)의 미토콘드리아 DNA 다형현상 (Motochondrial DNA Polymorphism of the Blue Mussel (Mytilus edulis) Species Complex on the East Coast of Korea)

  • 김익수;민병윤;윤명희;김도훈
    • 생명과학회지
    • /
    • 제9권3호
    • /
    • pp.262-267
    • /
    • 1999
  • Mitochondrial DNA (mtDNA) polymorphism of the blue mussel (Mytilus edulis) species complex sampled from the east coast of Korean was studied using a partial sequence of COIII gene (336 bp). Samples obtained from three localities on the east coast of Korea revealed four haplotypes with two clearly differentiated mitochondrial clades (termed clades B and E), separated by 4.2% of minimum sequence divergence. This pattern indicates no difference between east and south coasts of Korea. According to population genetic theory on evolutionary characteristics of mtDNA, we concluded that mtDNA introgression from M. edulis to M. gallprovincialis might be a source for mtDNA polymorphism found in mussels on the east coast of Korea.

  • PDF

Unusual Mitochondrial DNA Polymorphism of the Blue Mussel (Mytilus edulis) Species Complex on the Southern Coast of Korea

  • Iksoo Kim;Byung-Yoon Min;Myung-Hee Yoon;Myong-Suk Yoo;Doh-Hoon Kim
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.79-87
    • /
    • 1999
  • Mitochondrial DNA (mtDNA) from 54 specimens of the blue mussel (Mytilus edulis) species complex sampled from the southern coast of Korea was assayed for polymorphism with a portion of the COIII gene (336 bp). Fifteen haplotypes were found. PAUP, one-step networks, and PHYLIP analyses revealed the presence of two clearly differentiated mitochondrial clades (termed clades B and E), separated by 3.6% of minimum sequence divergence. The distribution pattern of the species appears to be consistent with category II of the phylogeographic pattern sensu (Avise et al., 1987): the presence of two discontinuous and distinct mtDNA genotypes in the same geographic region. This unusual mitochondrial polymorphism was explained by the presence of the Mediterranean species, M. galloprovincialis, possessing mtDNA of both M. galloprovincialis and M. edulis.

  • PDF

Mitochondrial DNA Variation and Genetic Relationships in Japanese and Korean Cattle

  • Sasazaki, S.;Odahara, S.;Hiura, C.;Mukai, F.;Mannen, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1394-1398
    • /
    • 2006
  • The complete mtDNA D-loop regions of Japanese and Korean cattle were analyzed for their mtDNA variations and genetic relationships. Sequencing the 30 Higo substrain and 30 Tosa substrain of Japanese Brown, respectively 12 and 17 distinct Bos haplotypes were identified from 77 polymorphic nucleotide sites. In order to focus on the relationships among Japanese and Korean cattle, two types of phylogenetic tree were constructed using individual sequences; first, a neighbor-joining tree with all sequences and second, reduced median networks within each Japanese and Korean cattle group. The trees revealed that two major mtDNA haplotype groups, T3 and T4, were represented in Japanese and Korean cattle. The T4 haplogroup predominated in Japanese Black and Japanese Brown cattle (frequency of 43.3-66.7%), while the T3 haplogroup was predominant (83.3%) and T4 was represented only twice in the Korean cattle. The results suggested that the mitochondrial origins of Japanese Brown were Japanese ancient cattle as well as Japanese Black in despite of the considerable introgression of Korean and European cattle into Japanese Brown.

제주재래돼지 집단서 집단특이적 mtDNA Haplotype과 유전적 다양성 (Genetic Variation and Population Specific Mitochondrial DNA Haplotype Found in the Jeju Native Pig Population)

  • 한상현;조인철;이종언;이성수;강승률;최유림;오윤용;성필남;고서봉;오문유;고문석
    • Journal of Animal Science and Technology
    • /
    • 제46권6호
    • /
    • pp.917-924
    • /
    • 2004
  • 미토콘드리아 ND2 유전자와 세 가지 tRNA (tRNA-M앙, tRNA-Trp, tRNA-Ala)들이 포함}는 mtDNA 절펀의 PCR-RFLP haplotyping 기법으로 제주도에서 사육하는 한국 재래돼지를 포함하는 5개 품종에 대한 유전적 다양성을 조사하였다. 몇몇 돼지 품종에서 mtDNA 상의 제한절편 길이의 다형성이 관찰되었다. HaeIll-와 Hinf1RFLP에서는 두 가지 제한절편 유형, Tsp509IRFLP에서는 네 가지 유형으로 각각 구분되었다. 발견된 제한절편 유형들을 조협하여 mtDNA haplotype으로 구분했을 때, 모두 네 가지 haplotype들이 발견되었고 집단에 따라 각기 다른빈도를 나타내였다. 하나의 동일한 haplotype mtWB가 한반도 야생멧돼지와 Large White 집단에서 관찰되었다. Duroc과 Landrace 품종들은 여러 모계 선조에서 유래되었을 것으로 추정되는 두 가지의 haplotype들을 가지고 있었다. 제주도에서 사육되고 있는 한국재래돼지 집단에서는 muD와 mtJN haplonpe들이 관찰되었는데, 이 중 mtJN은 빈도가 높고 집단 특이적이었다. 본 연구의 결과는 제주 돼지 집단의 형성에 적어도 둘 이상의 모계 선조가 참여했으며, 이후 동아시아 언근 돼지 품종들과의 인위적인 교잡아 이루어졌을 것으로 추정된다. 연구진의 예상과는 달리 한반도 야생멧돼지가 제주 재래돼지 집단의 모계 선조라는 증거는 확인되지 않았다. MtDNA haplotype과 돼지 계통간의 관계 에서의 특이성은 돼지 육종에 있어 모계 확인과 계보 구성에 매우 유용한 정보를 제공할 것으로 사료된다.

Evaluating genetic diversity and identifying priority conservation for seven Tibetan pig populations in China based on the mtDNA D-loop

  • Ge, Qianyun;Gao, Caixia;Cai, Yuan;Jiao, Ting;Quan, Jinqiang;Guo, Yongbo;Zheng, Wangshan;Zhao, Shengguo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1905-1911
    • /
    • 2020
  • Objective: Tibetan pigs, an excellent species unique to China, face serious threats, which in turn affects the development and utilization of the outstanding advantages of plateau hypoxia adaptability and reduces their genetic diversity. Therefore, a discussion of measures to conserve this genetic resource is necessary. The method, based on genetic diversity, genetic divergence and total genetic contribution rate of population, reflects the priority conservation order and varies depending on the three different purposes of conservation. Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces and downloaded 564 mtDNA D-loop sequences from three indigenous pig breeds in Qinghai, Sichuan, and Yunnan Provinces distributed near the Tibetan pigs. Results: We analyzed three different aspects: Changdu Tibetan pigs have the highest genetic diversity, and from the perspective of genetic diversity, the priority conservation is Changdu Tibetan pigs. Hezuo Tibetan pigs have the highest genetic contribution, so the priority conservation is Hezuo Tibetan pigs in the genetic contribution aspect. Rkaze Tibetan pigs were severely affected by indigenous pig breeds, so if considering from the perspective of introgression, the priority conservation is Rkaze Tibetan pigs. Conclusion: This study evaluated genetic diversity and comprehensively assessed conservation priority from three different aspects in nine Tibetan pig populations.

Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis)

  • Lei, Chu-Zhao;Zhang, Wei;Chen, Hong;Lu, Fan;Ge, Qing-Lan;Liu, Ruo-Yu;Dang, Rui-Hua;Yao, Yun-Yi;Yao, Li-Bo;Lu, Zi-Fan;Zhao, Zhong-liang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.471-476
    • /
    • 2007
  • Little is known about the origin and genetic diversity of swamp buffaloes in China. To obtain more knowledge on genetics of the water buffalo in China, the complete mitochondrial D-loop sequences of 30 samples from 6 native types were investigated. The results revealed 12 mitochondrial haplotypes with 50 polymorphic sites. Among these polymorphic sites, there were 49 transitions and 1 transversion. The average nucleotide diversity and haplotype diversity estimated from mtDNA D-loop region in 6 Chinese water buffalo types were 0.00684 and 0.798, respectively, showing rather abundant mitochondrial genetic diversity. The Neighbor-Joining (NJ) tree of mtDNA of Chinese water buffaloes was constructed according to the 12 haplotypes. The NJ tree indicated two lineages being designated lineage A and lineage B, in which lineage A was predominant, and lineage B was at low frequency. The new lineage B was first discovered and defined in 6 Chinese water buffalo types. These results showed that two different maternal lineages were involved in the origin of domestic swamp buffaloes in China and the lineage B was probably an introgression from Southeast Asian buffaloes.

미토콘드리아 DNA 분석을 통한 구상나무와 분비나무의 계통지리학적 연구 (Phylogeographic study of Abies koreana and Abies nephrolepis in Korea based on mitochondrial DNA)

  • 양종철;이동근;주민정;최경
    • 식물분류학회지
    • /
    • 제45권3호
    • /
    • pp.254-261
    • /
    • 2015
  • 분비나무와 구상나무의 계통지리적 유연관계 파악을 위하여 16개 지역의 구상나무와 분비나무 집단에 대하여 미토콘드리아 DNA(nad5 intron 4, nad5 intron 1 지역)를 이용한 유전적 분석을 수행하였다. 그 결과 총 7 지역의 유전자 변이가 확인되었으며, 4개의 반수체형이 확인되었다. 개체군 내 평균 유전다양성($H_S$)은 0.098, 전체 유전다양성($H_T$)은 0.620으로 관찰되었으며, 개체군 간 분화값은 $G_{ST}=0.841$, $N_{ST}=0.849$로 확인되었다. 조사 개체의 지리적 위치에 따라 일본지역을 제외하고 3개의 그룹(북부지역, 중부지역, 남부지역)으로 나누었다. 북부지역과 남부지역은 대부분 각각 M1, M2 단일의 반수체형을 가지며, 중부지역은 북부지역과 남부지역의 분포경계에 위치하면서 유전자 유입으로 인해 유전 다양성 ($H_T=0.654$) 이 가장 높게 나타난 것으로 판단된다. 현재 남부지역의 단일의 반수체형(M2) 분포는 빙하기 때 북부지역에서 남하한 개체군들이 지리적 격리를 통해 분화하게 되고 빙하기 이후 다시 중부지역까지 분포 확장된 결과로 추측된다.

Mitochondrial DNA variation and phylogeography of Old World camels

  • Ming, Liang;Siren, Dalai;Yi, Li;Hai, Le;He, Jing;Ji, Rimutu
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.525-532
    • /
    • 2021
  • Objective: Old World camels are a valuable genetic resource for many countries around the world due to their adaptation to the desert environment. At present, Old World camels have encountered the challenge of unprecedented loss of genetic resources. Through our research, we would reveal the population structure and genetic variation in Old World camel populations, which provides a theoretical basis for understanding the germplasm resources and origin and evolution of different Old World camel populations. Methods: In the present study, we assessed mtDNA control region sequences of 182 individuals from Old World camels to unravel genetic diversity, phylogeography, and demographic dynamics. Results: Thirty-two haplotypes confirmed by 54 polymorphic sites were identified in the 156 sequences, which included 129 domestic and 27 wild Bactrian camels. Meanwhile, 14 haplotypes were defined by 47 polymorphic sites from 26 sequences in the dromedaries. The wild Bactrian camel population showed the lowest haplotype and nucleotide diversity, while the dromedaries investigated had the highest. The phylogenetic analysis suggests that there are several shared haplotypes in different Bactrian camel populations, and that there has been genetic introgression between domestic Bactrian camels and dromedaries. In addition, positive values of Tajima's D and Fu's Fs test demonstrated a decrease in population size and/or balancing selection in the wild Bactrian camel population. In contrast, the negative values of Tajima's D and Fu's Fs test in East Asian Bactrian camel populations explained the demographic expansion and/or positive selection. Conclusion: In summary, we report novel information regarding the genetic diversity, population structure and demographic dynamics of Old World camels. The findings obtained from the present study reveal that abundant genetic diversity occurs in domestic Bactrian camel populations and dromedaries, while there are low levels of haplotype and nucleotide diversity in the wild Bactrian camel population.