• Title/Summary/Keyword: moving-period simulation

Search Result 49, Processing Time 0.025 seconds

Study of Simulation Method for Certified Missile Rounds Concepts with Constraints (제약사항을 고려한 보증 유도탄 시뮬레이션 기법 연구)

  • Lee, Kye-Shin;Lee, Youn-Ho;Cho, Yong-Seok;Kim, Hyo-Chang;Kim, Sang-Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.127-138
    • /
    • 2011
  • Certified Missile Round Concepts that is one-shot device use the periodic inspection policy to improve the continuously deteriorated reliability. In this paper, we suggest dormant reliability prediction model by simulation with real operational environment. The suggested prediction model is based on optimal inspection period decision model and additionally considers various constraints; moving, inspection or repair service time. The simulation results show the constraints affect dormant reliability and missile availability. Lastly, we suggest building up a depot to resolve the above problems by the suggested simulation model.

An indoor fusion positioning algorithm of Bluetooth and PDR based on particle filter with dynamic adjustment of weights calculation strategy

  • Qian, Lingwu;Yuan, Bingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3534-3553
    • /
    • 2021
  • The low cost of Bluetooth technology has led to its wide usage in indoor positioning. However, some inherent shortcomings of Bluetooth technology have limited its further development in indoor positioning, such as the unstable positioning state caused by the fluctuation of Received Signal Strength Indicator (RSSI) and the low transmission frequency accompanied by a poor real-time performance in positioning and tracking moving targets. To address these problems, an indoor fusion positioning algorithm of Bluetooth technology and pedestrian dead reckoning (PDR) based on a particle filter with dynamic adjustment of weights calculation strategy (BPDW) will be proposed. First, an orderly statistical filter (OSF) sorts the RSSI values of a period and then eliminates outliers to obtain relatively stable RSSI values. Next, the Group-based Trilateration algorithm (GTP) enhances positioning accuracy. Finally, the particle filter algorithm with dynamic adjustment of weight calculation strategy fuses the results of Bluetooth positing and PDR to improve the performance of positioning moving targets. To evaluate the performance of BPDW, we compared BPDW with other representative indoor positioning algorithms, including fingerprint positioning, trilateral positioning (TP), multilateral positioning (MP), Kalman filter, and strong tracking filter. The results showed that BPDW has the best positioning performance on static and moving targets in simulation and actual scenes.

Characteristics of thunderstorms relevant to the wind loading of structures

  • Solari, Giovanni;Burlando, Massimiliano;De Gaetano, Patrizia;Repetto, Maria Pia
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.763-791
    • /
    • 2015
  • "Wind and Ports" is a European project that has been carried out since 2009 to handle wind forecast in port areas through an integrated system made up of an extensive in-situ wind monitoring network, the numerical simulation of wind fields, the statistical analysis of wind climate, and algorithms for medium-term (1-3 days) and short term (0.5-2 hours) wind forecasting. The in-situ wind monitoring network, currently made up of 22 ultrasonic anemometers, provides a unique opportunity for detecting high resolution thunderstorm records and studying their dominant characteristics relevant to wind engineering with special concern for wind actions on structures. In such a framework, the wind velocity of thunderstorms is firstly decomposed into the sum of a slowly-varying mean part plus a residual fluctuation dealt with as a non-stationary random process. The fluctuation, in turn, is expressed as the product of its slowly-varying standard deviation by a reduced turbulence component dealt with as a rapidly-varying stationary Gaussian random process with zero mean and unit standard deviation. The extraction of the mean part of the wind velocity is carried out through a moving average filter, and the effect of the moving average period on the statistical properties of the decomposed signals is evaluated. Among other aspects, special attention is given to the thunderstorm duration, the turbulence intensity, the power spectral density and the integral length scale. Some noteworthy wind velocity ratios that play a crucial role in the thunderstorm loading and response of structures are also analyzed.

Large Eddy Simulation of Turbulent flow around a Square Cylinder (대형 와 모사법 (LES)을 이용한 사각 실린더 주위의 난류 유동장 해석)

  • Chun, Ho-Hwan;Jung, Kwang-Hyo;Yoon, Hyun-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.675-682
    • /
    • 2006
  • This study has investigated the turbulent flow around a square cylinder by using LES (large eddy simulation). Numerical simulations are performed for turbulent flow fields with Re = 22,000. The computed results are in good agreement with existing computational and experimental data. The time-averaged and phase-averaged turbulent statistics around a square cylinder are discussed. Total 20 phase bins extracted from one cycle period showed detailed wake structures of the phase-averaged flow field. The center of Karman vortex sheets did not deviated ${\pm}0.5$ from centerline of square cylinder while moving downstream.

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

Optimal Allocation of Shunt Capacitor-Reactor Bank in Distribution System with Dispersed Generators Considering Installation and Maintenance Cost (분산전원을 포함한 배전계통에서 설치비용과 유지보수 비용을 고려한 병렬 캐패시터-리액터 Bank의 최적 설치 위치 선정)

  • Heo, Jae-Haeng;Lyu, Jae-Kun;Lee, Woo-Ri;Park, Jong-Young;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1511-1519
    • /
    • 2013
  • This paper proposes the allocation method for capacitor-reactor banks in a distribution system with dispersed generators to reduce the installation costs, the maintenance costs and minimize the loss of electrical energy. The expected lifetime and maintenance period of devices with moving parts depends on the total number of operations, which affects the replacement and maintenance period for aging equipment under a limited budget. In this paper, the expected device lifetimes and the maintenance period are included in the formulation, and the optimal operation status of the devices is determined using a genetic algorithm. The optimal numbers and locations for capacitor-reactor banks are determined based on the optimal operation status. Simulation results in a 69-bus distribution system with the dispersed generator show that the proposed technique performs better than conventional methods.

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

Research on UAV access deployment algorithm based on improved virtual force model

  • Zhang, Shuchang;Wu, Duanpo;Jiang, Lurong;Jin, Xinyu;Cen, Shuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2606-2626
    • /
    • 2022
  • In this paper, a unmanned aerial vehicle (UAV) access deployment algorithm is proposed, which is based on an improved virtual force model to solve the poor coverage quality of UAVs caused by limited number of UAVs and random mobility of users in the deployment process of UAV base station. First, the UAV-adapted Harris Hawks optimization (U-AHHO) algorithm is proposed to maximize the coverage of users in a given hotspot. Then, a virtual force improvement model based on user perception (UP-VFIM) is constructed to sense the mobile trend of mobile users. Finally, a UAV motion algorithm based on multi-virtual force sharing (U-MVFS) is proposed to improve the ability of UAVs to perceive the moving trend of user equipments (UEs). The UAV independently controls its movement and provides follow-up services for mobile UEs in the hotspot by computing the virtual force it receives over a specific period. Simulation results show that compared with the greedy-grid algorithm with different spacing, the average service rate of UEs of the U-AHHO algorithm is increased by 2.6% to 35.3% on average. Compared with the baseline scheme, using UP-VFIM and U-MVFS algorithms at the same time increases the average of 34.5% to 67.9% and 9.82% to 43.62% under different UE numbers and moving speeds, respectively.

Stick-slip in Chemical Mechanical Polishing Using Multi-Particle Simulation Models (다수의 연마입자를 고려한 CMP 공정의 Stick-Slip 고찰)

  • Jung, Soyoung;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.279-283
    • /
    • 2018
  • In this study, we investigate the behavior of abrasive particles and change of the stick-slip pattern according to chemical mechanical polishing (CMP) process parameters when a large number of abrasive particles are fixed on a pad. The CMP process is simulated using the finite element method. In the simulation, the abrasive grains are composed of those used in the actual CMP process. Considering the cohesion of the abrasive grains with the start of the CMP process, abrasive particles with various sizes are fixed onto the pad at different intervals so that stick-slip could occur. In this analysis, we determine that when the abrasive particle size is relatively large, the stick-slip period does not change as the pressure increases while the moving speed is constant. However, if the size of the abrasive grains is relatively small, the amount of deformation of the grains increases due to the elasticity of the pad. Therefore, the stick-slip pattern may not be observed. As the number of abrasive particles increases, the stick-slip period and displacement decrease. This is consistent with the decrease in the von Mises yield stress value on the surface of the wafer as the number of abrasive grains increases. We determine that when the number of the abrasive grains increases, the polishing rate, and characteristics are improved, and scratches are reduced. Moreover, we establish that the period of stick-slip increases and the change of the stick-slip size was not large when the abrasive particle size was relatively small.

Malicious Attack Success Probability on the Change of Vulnerable Surfaces in MTD-SDR System (MTD-SDR 시스템의 취약요소 변경에 따른 악의적 공격 성공 확률)

  • Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.55-62
    • /
    • 2018
  • The MTD-based approach changes various operating parameters dynamically so that the vulnerability of the system can be protected from the malicious attack. In this paper, random/serial scanning/jamming attack success probabilities have been mathematically analyzed and verified through simulation to improve the security of the wireless communication systems in which the MTD-SDR technologies are applied. As a result, for random scanning attacks, attack success probability increases as the change period of transmission channel increases, while for random jamming attacks there is no change. The attack success probability patterns for serial attacks are similar to those of random attacks, but when the change period of transmission channel approaches to the total number of transmission channels, the success probability of serial attack is getting greater than that of random attack, up to twice in jamming attacks and up to 36% in scanning attacks.