• Title/Summary/Keyword: moving trains induced vibrations

Search Result 3, Processing Time 0.02 seconds

Train induced dynamic response of a pedestrian tunnel under a four-track surface railway for different soil water contents

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.341-353
    • /
    • 2018
  • A reinforced concrete pedestrian tunnel is constructed under a four-track surface railway. Heavy rainfall and soil exposure to drying lead to soil with different water content throughout the year. A railway is an open utility that is subject to rainfall without control on the quantity of the water on it and when there is a tunnel under a railway, the water content of the soil around the tunnel is very influential. This research shows the effects of change of water content in the soil around a pedestrian tunnel under a four-track surface railway. The pedestrian tunnel and the soil block around the tunnel are modeled in 3D by the FEM and are studied under the vibrations induced by the moving trains on the four-track surface railway for different soil water contents and the effects of the soil water content on the dynamic behavior of the tunnel and the surrounding soil are demonstrated.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.