• 제목/요약/키워드: moving train load

검색결과 71건 처리시간 0.027초

상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석 (WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STAT10N CAUSED BY PASSING TRAINS)

  • 이명성;이상혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.64-67
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique is adopted considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel of platform are included in a computational domain and detailed shape of train is also modeled Numerical analyses were conducted on five operational condition which are different velocity variation of subway train, existence of stationary train and passing each other trains. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation was found to be satisfactory to various foreign standards.

  • PDF

상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석 (WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STATION CAUSED BY PASSING TRAINS)

  • 이명성;이상혁;허남건
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.1-6
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is used with actual operational condition of subway train by adopting the moving mesh technique considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel connecting the stations are included in a computational domain with modeling the detailed shape of the train. Numerical analyses are conducted on five operational conditions which include the variation of the train speed, case with or without the train stopped in the other track, and case for two trains passing each other inside the station. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation for the cases considered in the present study is found to be satisfactory to various foreign standards.

진동제어장치를 이용한 고속열차-강아치교의 수직진동제어 (Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device)

  • 고현무;강수창;유상희;옥승용;추진교
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

고속철도교량의 동적안정성 평가연구 (An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges)

  • 방명석;정광모
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

열차이동하중 작용시 구조물 접속부의 동적 거동특성 연구 (Study on Dynamic Characteristics of Structure Approaches by Train Moving Loads)

  • 엄기영;김영하;김재왕
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.298-304
    • /
    • 2013
  • 본 논문은 구조물이 위치한 구간에 대하여 향후 최고시험속도 430km/h 차세대 고속철도 차량 및 고속열차 운영속도의 증속이 이루어지는 구간인 열차하중의 직접적인 영향이 예상되는 구조물 접속부를 대상으로 열차 증속에 따른 구조물의 동적영향을 시스템적으로 거동을 분석하였다. 그리고 열차하중에 의한 동적영향 검토를 수행하여 지중구조물과 인접 토공부의 거동특성을 분석하고 궤도노반의 성능평가 분석, 열차이동하중의 동적영향으로 인한 구조물의 안정성을 평가하기 위해 수치해석을 수행하였다. 분석결과 열차하중에 따른 동적영향은 적지만 연직가속도가 다소 크게 나타나는 것으로 분석되었다.

열차하중의 주행에 의한 트러스교의 동적응답에 관한 연구 (A Study on Dynamic Response of Truss Bridge due to Moving Train Loads)

  • 장동일;최강희;이종득
    • 대한토목학회논문집
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 1989
  • 본 연구에서는 열차가 일정한 속도로 주행할 때 트러스교에 얼어나는 동적응답을 구해보았다. 해석은 Householder 변환과 QL법을 이용하여 고유치해석을 실시한 후 이를 토대로 모든중첩법에 의해 동적응답을 구했으며, 이것의 타당성을 밝히기 위해서는 먼저 아주 느린 속도로 하중이 주행할 때 얻어지는 응답을 정적해석프로그램에 의한 결과치와 비교하였고, 동적응답은 직접 적분법에 의한 결과 치와 비교해 보았다. 그리고 이를 토대로 열차의 속도와 형태의 변화에 따른 동적확대계수의 변화를 살펴보았으며, 또한 그것들을 시방서 규정과 비교해 보았다. 그 결과 열차의 속도가 낮은 경우 동적확대계수는 열차의 형태에 관계없이 비교적 낯은 값이 있었으나 속도가 높아질수록 형태에 따라 크게 다르고, 전도차 및 U. I. C. 하중의 경우는 그값이 시방서 규정을 초과하는 경우도 있음을 알수 있었다.

  • PDF

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

파일슬래브구조가 적용된 고속철도 토공노반에서의 진동 전파 (Wave Propagation on a High-speed Railway Embankment Using a Pile-slab Structure)

  • 이일화;이성진;이수형;이강명
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.278-285
    • /
    • 2013
  • 콘크리트궤도가 도입됨에 따라 토공노반에서의 잔류침하 억제가 중요한 사안으로 대두되고 있다. 파일슬래브구조는 침하억제공법으로서 슬래브는 성토하중을 분산하고 파일은 분산된 하중을 지지층까지 직접 전달시켜 충분히 지지력을 확보하여 침하를 방지한다. 철도노반에 적용시 하중전달특성은 매우 우수하지만, 주행하중에 대한 진동전달 및 상호작용에 대한 특성이 규명되지 않았다. 구조적 특성상 이동하는 열차하중에 의해 발생한 진동은 슬래브를 반사층으로 하여 상부성토체 내에서 다중반사되어 전파할 가능성이 있는데 이는 열차의 주행안정성과 승차감에 영향을 미칠 수 있다. 본 논문에서는 파일슬래브가 설치된 철도노반에서 열차 주행에 의해 발생되는 진동에너지의 전파특성을 평가하기 위하여 인공적인 충격하중과 고속열차의 실측하중을 사용하여 노반구조별 진동전파특성을 시간영역 및 주파수 영역에서 해석하였다. 검토 결과, 파일슬래브 구조에서의 진동 반사효과를 확인하였으며, 적정 성토고가 확보되는 경우에는 진동에 안정적이지만 성토고가 낮은 경우에는 저주파 영역의 진동에너지가 증가하는 것으로 나타났다.