• Title/Summary/Keyword: moving loads

Search Result 309, Processing Time 0.022 seconds

Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads

  • Gan, Buntara S.;Trinh, Thanh-Huong;Le, Thi-Ha;Nguyen, Dinh-Kien
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.981-995
    • /
    • 2015
  • This paper presents a finite element procedure for dynamic analysis of non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point loads. The material properties are assumed to vary continuously in the longitudinal direction according to a predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional variation into account, is formulated by using exact polynomials derived from the governing differential equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are computed by using the implicit Newmark method. The numerical results show that the dynamic characteristics of the beams are greatly influenced by the number of moving point loads. The effects of the distance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the dynamic responses of the beams are also investigated in detail and highlighted.

Dynamic analysis and model test on steel-concrete composite beams under moving loads

  • Hou, Zhongming;Xia, He;Wang, Yuanqing;Zhang, Yanling;Zhang, Tianshen
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.565-582
    • /
    • 2015
  • This paper is concerned with the dynamic analysis of simply-supported steel-concrete composite beams under moving loads. Considering the interface slip between steel girder and concrete slab, the governing motion equations are derived from the direct balanced method. By variable separation approach, the analytical solution of natural frequencies and mode shapes are obtained, as well as the orthogonal conditions. Then the dynamic responses of the composite beam under moving loads are analyzed, and compared with the experimental results. The analysis results show that the governing motion equations become more complicated when interface slip is taken into account, and the dynamic behaviors are significantly influenced by the shear connection stiffness. In the dynamic calculation of composite beams, the global stiffness should not be reduced as the same factor to all orders, but as different ones according to the dynamic stiffness reduction factor (DSRF), to which should be paid more attention in calculation, design and experiment, or else great deviation is inevitable.

Development of Moving Force Identification Algorithm Using Moment Influence Lines at Multiple-Axes and Density Estimation Function (다축모멘트 영향선과 밀도추정함수를 사용한 이동하중식별 알고리듬의 개발)

  • Jeong, Ji-Weon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.87-94
    • /
    • 2006
  • Estimating moving vehicle loads is important in modeling design loads for bridge design and construction. The paper proposes a moving force identification algorithm using moment influence lines measured at multi-axes. Density estimation function was applied to estimate more than two wheel loads when estimated load values fluctuated severely. The algorithm has been examined through simulation studies on a simple-span plate-girder bridge. Influences of measurement noise and error in velocity on the identification results were investigated in the simulation study. Also, laboratory experiments were carried out to examine the algorithm. The load identification capability was dependent on the type and speed of moving loads, but the developed algorithm could identify loads within 10% error in maximum.

Effect of Longitudinal Steel Ratio on Behavior of CRCP System (연속철근콘크리트 도로포장의 거동에 종방향 철근비가 미치는 영향)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Kwon, Soon-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.58-61
    • /
    • 2006
  • The effect of the steel ratio on the behavior of continuously reinforced concrete pavement (CRCP) under moving wheel loads and environmental loads were investigated in this study. The CRCP sections having different steel ratios of 0.6, 0.7, and 0.8% were considered: (1) to evaluate the load transfer efficiency (LTE) at transverse cracks; (2) to investigate strains in CRCP when the system is subjected to moving vehicle loads; (3) and to investigate the time histories of the crack spacing variations. The LTEs were obtained by conducting the falling weight deflectometer (FWD) tests. The strains in the concrete slab and the bond braker layer under moving vehicle loads were obtained using embedded strain gages. The results of this study show that the LTEs at transverse cracks are very high and not affected by the steel ratio. The strains in CRCP under vehicle loads become smaller as the vehicle speed increases or as the wandering distance increases; however, the strains are not clearly affected by the steel ratio. However, the changes in the crack spacings are affected by the steel ratio.

  • PDF

Dynamic Response Optimization of a Mobile Harbor Crane with a Moving Support (지지부가 움직이는 모바일하버용 크레인의 동적 응답 최적설계)

  • Kim, Hyun-Bum;Lee, Jae-Jun;Jang, Hwan-Hak;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.497-504
    • /
    • 2012
  • The mobile harbor is a new innovative system that delivers containers from a containership to a harbor without good infrastructure. A crane is installed on the deck of the mobile harbor and transfers the containers. The structure of the crane is influenced by the inertia force that occurs from a moving support. Thus an accurate safety verification considering the moving support is required. Lightweight of the crane structure is also significant in the design for low production cost and efficient operation. Dynamic response optimization can be exploited to achieve these two requirements. Equivalent static loads method is employed for dynamic response optimization of the crane. The equivalent static loads method transforms dynamic loads to equivalent static loads, and static response structural optimization with the transformed equivalent static loads are solved. The process proceeds in a cyclic manner. A new method is proposed to consider the moving supports and the structure of the mobile harbor is optimized using the proposed method.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

Finite element dynamic analysis of laminated composite beams under moving loads

  • Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.729-745
    • /
    • 2012
  • This study presents dynamic analysis of laminated beams traversed by moving loads using a multilayered beam element based on the first-order shear deformation theory. The present element consists of N layers with different thickness and material property, and has (3N + 7) degrees of freedom corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions.

Boundary Element Anslysis of Multilayered System for Moving Loads (이동하중에 대한 다층반무한체의 동적경제요소 해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.98-105
    • /
    • 1998
  • In this study, the boundary element analysis in dynamics for the multilayered semi-infinite plane is developed using the fundamental solution for moving loads. Also the indirect method and superposition method are introduced to consider the multilayered systems and moving loads. At each layer the fundamental solution can be obtained by solving the governing equation which is transformed by the Fourier transform. The governing equation can be solved by three conditions; continuity conditions of displacement and stress, the traction free condition at the surface and the radiation condition at the surface and the radiation condition at the infinite distance. To verify the solution and the developed algorithm, the theoretical solution for the homogeneous layer and commercial FEM program is compared with the results of this study.

  • PDF

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.