• Title/Summary/Keyword: moving heat sources

Search Result 15, Processing Time 0.024 seconds

Fininte element analysis of electron beam welding considering for moving heat source (이동 열원을 고려한 전자빔 용접의 유한요소해석)

  • Cho, Hae-Yong;Jung, Seok-Young;Kim, Myung-Han;Cho, Chang-Yong;Lee, Je-Hoon;Seo, Jung
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

Finite Element Analysis for Breaking of Glass Using Laser (레이저를 이용한 유리절단의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • Glass is one of brittle materials. Generally, brittle material is weak for tensile stress but strong for compression stress. Laser breaking of glass used this brittle characteristics. Laser breaking of glass was simulated to optimize breaking condition by using commercial FEM code MARC which is applicable to thermo-mechanical coupling analysis. Various shapes of heat sources were applied to the analysis and the distance between heating and cooling source were varied for each simulation. The shapes of heat sources were circle, single and double ellipse and the distance was varied from 0mm to 30mm. Moving heat sources were designed on the basis of experimental condition. As a result, double elliptic shape of heat source was the most suitable among them in laser breaking of glass. And it should be useful to determine optimal condition of laser breaking for glass.

  • PDF

Temperature Distribution and Thermal Stresses of Infinite Plate due to Tandem Arc Welding (Tandem熔接으로 因한 溫度分布 및 熱應力)

  • Kim, Hyo-Chul;Lee, Jun-Yeol
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 1977
  • In shipyard production processes, lots of steel plates are assembled by welding. Some rectangular steel plates are buttwelded to build a large block in panel production lines. There are some advantages to take the tandem arc welding in butt joints of rectangular plates with respect to welding speed. Hence, the thermal stresses and the temperature distribution of the tandem arc welding are studied in this paper. The solutions in the case of the infinite plate with two instantaneous point heat sources have been obtained. And then the solutions have been extended to the case of two moving heat sources corresponding to the tandem arc welding with the aid of Duhamel's superposition integral. It was found that the temperature distribution was good agreement with the results of the experiments by Rosenthal and Park and the thermal stresses calculated were acceptable with respect to a physical phenomenon. These solutions are able to be applied to the problem such as a line heating.

  • PDF

Study on the Preheating Method of NURBS Shaped Workpiece by Laser Assisted Machining (레이저보조가공에서 NURBS 곡면 형상의 예열방법에 대한 연구)

  • Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.101-107
    • /
    • 2016
  • Laser-Assisted machining (LAM) is a new method for processing hard-to-cut materials. However, curved shapes are difficult to predict the preheating effect of by LAM because heat sources are changed by moving laser module. So, it is necessary to study the preheating effect of the laser heat source irradiated on a 3-dimensionally shaped workpiece, such as a NURBS shaped workpiece. In this study, thermal analysis and preheating experiment of the LAM for the NURBS shaped workpiece are performed. Also, two machining methods are proposed to avoid interference of laser module and cutting tool. The results of the analysis can be applied to various shaped workpieces by LAM.

Evaporation Rate of DME in Cargo Storage Tank by Rolling Motion of Ship (DME FPSO 선박의 Rolling 유동에 따른 증발 연구)

  • Yun, Sangkook;Cho, Wonjun;Baek, Youngsoon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.280-280
    • /
    • 2012
  • DME(Dimethyl Ether) is the one of the massive energy sources synthesized from natural gas. KOGAS has already developed the commercial-scale production plant of DME and has been doing to obtain overseas resources to meet the domestic needs. This paper presents an experimental study on the evaporation phenomena of DME in FPSO or cargo vessel. The various moving motions, along with heat intake cause the evaporation of low temperature liquids in vessel's storage tank. The experimental result shows that the evaporation rate was changed with rolling degree and cycle and liquid level. The rolling motion leads to evaporate about 30~35% of total evaporation quantity and the rest amount from heat intake.

  • PDF

A Study on the Cutting Tool and Holder Deformation Prediction undergoing Laser-assisted Machining with Moving Heat Sources (이동열원을 고려한 레이저 보조가공에서 절삭공구와 홀더의 변형 예측에 관한 연구)

  • Jung, Jae-Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.127-134
    • /
    • 2009
  • Laser-assisted machining uses primarily laser power to heat the local area before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and accuracy with regard to difficult-to-machine materials. The prediction of relative deformations between the cutting tool and workpiece is important to improve the accuracy of machined components. This paper presents the deformation errors caused for a cylindrical workpiece by thermal effects in the laser-assisted machine tool using finite element method. The results can be used to increase the cutting accuracy by compensating thermal distortion prior to laser-assisted machining.

A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation (잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가)

  • Seo, Jung-Won;Goo, Byeong-Choon;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

The Effectiveness of Weaving Motion and Determination of Optimal Heating Condition in Line-heating (선상가열시 위빙방식의 효율성과 최적 가열조건 결정에 관한 연구)

  • 하윤석;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.68-76
    • /
    • 2004
  • Inherent strain method for analyzing deformation of line-heating is substituting experiments of high cost, because of its high accuracy and quickness. Nowadays, the progressing forms of line-heating are not straight moving motions used to traditional studies, but weaving motions which can diversely input heat source. In shipyard, reasons of weaving motions are induction of a special characteristic by water cooling, maximum temperature limitation for keeping plates from melting, and rhythm for workman's maintaining velocity. On this study, a method which can obtain optimal weaving heating condition was presented, some examples were introduced, and the results corresponded to works of shipyard. Lastly, what the specifications of plates on efficiency are is presented, through the quality standard of shipyard and FEM heat transfer simulation. The ultimate purpose of line heating is the automation, so in case of plates which need weaving heating, the optimal heating condition suggested by this study can be used well in designing coil specifications of induction heaters which are heat input sources of new generation.

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF

A Study on Multiphase Optimization of Machine Tool Structures (공작기계구조물의 다단계 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF