• Title/Summary/Keyword: moving blade row

Search Result 2, Processing Time 0.018 seconds

Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration

  • Tang, Zhihao;Liu, Peiqing;Guo, Hao;Yan, Jie;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.500-509
    • /
    • 2015
  • The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.

Extension Feasibility on Replacement Cycle of Rotor Blade Equipped for Low Pressure First Stage in a 150 MW Gas Turbine (150 MW급 가스터빈 저압 1단 회전익 교체주기 연장 가능성 연구)

  • Lim, Jong-Ho;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.4
    • /
    • pp.31-36
    • /
    • 2013
  • In order to extend a hot gas parts replacement cycle of a gas turbine, blade row 1 from low pressure turbine, which has a significant impact on the cycle, has been selected from stored set after one cycle use. Taking into account the status of the first stage moving blade in LP turbine operated more than 27,000 equivalent operating hours(EOH) and the replacement cycle in the same type of gas turbine, the replacement of the high temperature components installed on the GT, a study subject, can be extended from 24,000 to 27,000 EOH.

  • PDF